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Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum
information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in
quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough
understanding of how these quantities characterize complex quantum systems, most importantly in terms
of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has
been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally.
In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of
OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle
entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the
underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.
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Entanglement in quantum systems is a resource for
quantum computation and communication and has been
called the characteristic trait of quantum mechanics [1].
Recently, it has also been proposed [2] and experimentally
tested in proof-of-principle experiments [3,4] that quantum
entanglement is in fact the key concept behind thermal-
ization in isolated quantum systems. Essentially, the
approach to equilibrium can be understood as the spreading
of entanglement through the system’s degrees of freedom.
In parallel, the concept of “scrambling” in many-body
systems, which refers to the delocalization of quantum
information over all of a system’s degrees of freedom, has
gained great attention [5–13], motivated by the finding that
special models with thermal states “holographically dual”
to black holes can thermalize and scramble quantum
information at the fastest rate allowed by nature [14,15].
The scrambling rate can be quantified through out-of-
time-ordered correlators (OTOCs), which have been con-
nected to entanglement via the Rényi entropy [5,16].
However, the Rényi entropy is a strict entanglement
monotone only for pure systems and hard to access
experimentally, requiring resources that scale exponentially
with the subsystem size as well as single-particle address-
ing. Therefore, it is desirable to establish experimentally
accessible entanglement witnesses applicable to open as
well as isolated quantum systems, which can be used to
quantify scrambling.
In this Letter, we formally show that a specific family of

OTOCs, first developed in NMR under the name of the
multiple-quantum coherence (MQC) spectra, are useful

entanglement witnesses. The MQC protocol has been
known for many years to be a suitable method to quantify
the development of many-body quantum coherences
[17,18]. Recently, it has been applied to describe the
spreading of correlations [17,19–21] and as a signature
of localization effects [22–25]. While connections between
MQCs and entanglement have been pointed out in
Refs. [26–28] and witnesses of two-particle entanglement
have been constructed in Refs. [29,30], to date a formal
relation between the MQC spectrum and multiparticle
entanglement generally applicable to mixed states does
not exist. Here, we formally establish such a relation by
deriving entanglement witnesses from the MQC intensities,
as well as a relationship between MQCs and the quantum
Fisher information (QFI) [31,32], a well-known witness of
multiparticle entanglement.
To illustrate the power of these connections, we use the

specific example of a long-range Ising model in a trans-
verse field. We start the dynamics from a pure initial state,
but show the applicability of the witness to mixed states by
including decoherence arising from light scattering during
the dynamics. This type of decoherence is relevant for a
broad class of quantum systems. Our results demonstrate
the existence of an experimentally accessible link between
scrambling measured by OTOCs and entanglement, pro-
vided by the MQCs.
MQCs have a long tradition in NMR systems, which

typically operate at high temperature. Measuring MQCs in
pure and almost zero temperature initial states is now
becoming feasible in cold-atom experiments, including
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Bose-Einstein condensates, ultracold atoms in cavities, or
trapped ions [7,33–39]. Such experiments open the pos-
sibility to probe the rich information contained in an
entangled state via MQCs.
We start by introducing the MQCs, which have been

used as a means for quantifying quantum coherence
[17,18,20]. Let jψ ii be the eigenstates of a Hermitian
operator Â and λi the corresponding discrete eigenvalues.
We divide the density matrix of an arbitrary state ρ̂ into
blocks as ρ̂ ¼ P

m

P
λi−λj¼m ρijjψ iihψ jj ¼

P
mρ̂m. Thus,

ρ̂m contains all coherences between states with eigenvalues
of Â that differ by m. An experimentally accessible
quantifier of these MQCs is the Frobenius norm Imðρ̂Þ ¼
ð∥ρ̂m∥2Þ2 ¼ tr½ρ̂†mρ̂m� called multiple-quantum intensity.
The key idea is that Im can be directly accessed in an
experiment that has the ability to reverse the dynamics that
created the state of interest ρ̂ from an initial fiducial state ρ̂0.
In this context, the time reversal can be connected with the
concept of many-body Loschmidt echoes, well-known
probes of irreversibility and chaos [40–44].
The protocol to measure Im is [17,39] (see Fig. 1) as

follows: evolve ρ̂0 into ρ̂t under a nontrivial unitary
evolution e−iĤintt, apply ŴðϕÞ ¼ e−iÂϕ, evolve backward
with eiĤintt to ρ̂f, and finally measure the probability to find
the system in the initial state tr½ ρ̂0ρ̂f� (if ρ̂0 is pure, this is
the fidelity). Noting that ŴðϕÞρ̂mŴ†ðϕÞ ¼ eimϕρ̂m and
using cyclic permutations under the trace, one finds

FtðϕÞ≡ tr½ρ̂0ρ̂f� ¼ tr½ρ̂tρ̂tðϕÞ� ¼
X
m

Imðρ̂tÞe−imϕ; ð1Þ

where ρ̂tðϕÞ ¼ ŴðϕÞρ̂tŴ†ðϕÞ. Thus, by Fourier transform-
ing the signal with respect to ϕ, one obtains the MQC

spectrum fImðρ̂tÞg (see [45] for details). For NMR systems
typically operating at infinite temperature, this overlap
measurement reduces to a magnetization measurement,
making it possible to observe coherences as high as m ∼
7000 [23,24]. Nevertheless, the perturbative nature of the
coherences present in highly mixed states, which facilitates
experimental access of the MQCs, also implies that the
underlying quantum complexity and entanglement content
in those states are small in comparison to pure states. For
pure states, measuring MQCs requires a fidelity measure-
ment that encodes information about N-body correlations
in an N-particle system [59]. Despite the fact that, in
general, the resources required for measuring fidelity scale
unfavorably with the system size, the feasibility of such a
measurement has been demonstrated for up to 50 particles
[39], much beyond what is possible with schemes involving
measuring entanglement entropy.
The connection between MQCs and OTOCs becomes

apparent from ρ̂t ¼ e−iĤinttρ̂0eiĤintt. By defining V̂0 ¼ ρ̂0, if
V̂0ρ̂0 ¼ ρ̂0 [60], the above expression can be recast as
[25,39]

FtðϕÞ≡ tr½Ŵ†
t ðϕÞV̂†

0ŴtðϕÞV̂0ρ0�
¼ hW†

t ðϕÞV̂†
0ŴtðϕÞV̂0i; ð2Þ

where ŴtðϕÞ ¼ eiĤinttŴðϕÞe−iĤintt. FtðϕÞ is therefore an
OTOC function, a specific product of Heisenberg operators
not acting in normal order. When ŴðϕÞ and V̂0 are
chosen to be initially commuting operators, then FtðϕÞ ¼
1 − hj½ŴtðϕÞ; V̂0�j2i. The growth of the norm of the
commutator, i.e., the degree by which the initially commut-
ing operators fail to commute at later times due to the
many-body interactions generated by Ĥint, is commonly
used as an operational definition of the scrambling rate
[5–7]. Scrambling can be interpreted as the process by
which the information encoded in the initial state, through
the interactions, is distributed over the other degrees of
freedom of the system. This process makes it no longer
possible to retrieve the initial information by local oper-
ations and measurements.
We are now in the position to state the main results of the

Letter.
First, the second moment of the MQC spectrum [FI=2,

defined in Eq. (3)] provides a lower bound on the quantum
Fisher information FQ

FIðρ̂t; ÂÞ≡ 2
XN
m¼−N

Imðρ̂tÞm2

¼ −2
∂2FtðϕÞ
∂ϕ2

����
ϕ¼0

≤ FQðρ̂t; ÂÞ: ð3Þ

This expression becomes an equality for pure states ρ̂t.
The QFI has been introduced to quantify the maxi-

mal precision with which a parameter ϕ in the unitary

(a)

(b)

FIG. 1. (a) Illustration of the scheme for measuring the
coherences using time reversal. The state of interest ρ̂t is reached
after the first evolution period. The rotation then imprints a phase
mϕ on each sector ρ̂m of the density matrix (see text). Evolving
backward and measuring the overlap with the initial state as a
function of ϕ, the coherences Im of ρ̂t are retrieved as the Fourier
components of this signal. (b) An example for the fidelity signal
obtained from time evolution under the Ising Hamiltonian
[Eq. (5) with Ω ¼ 0] and rotations about the z axis of the spin
(Â ¼ Ŝz). By Fourier transforming this signal, one obtains the
intensities Im, which quantify the magnitude of the mth order
coherences of ρ̂t.
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ŴðϕÞ ¼ e−iÂϕ can be estimated using the quantum state ρ̂
as an input to an interferometer. It bounds the minimal

variance of ϕ as Δϕ ≥ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FQðρ̂; ÂÞ

q
(Cramér-Rao bound)

[61]. It has been shown that, if FQðρ̂; ÂÞ > bk ≡ nk2 þ
ðN − nkÞ2 where n is the integer part of N=k, then ρ̂ is
(kþ 1)-particle entangled [62–64]. To derive expression
(3), we used the relation FIðρ̂; ÂÞ ¼ 4tr½ρ̂2Â2 − ðρ̂ ÂÞ2�,
which is a lower bound on the QFI [65] (see also [45]). The
choice of the generator Â can be optimized for detecting the
entanglement of a given state using intuition from quantum
metrology.
The relation (3) has a number of implications, the most

direct one being thatFI inherits the property ofFQ of being a
witness formultiparticle entanglement; i.e.,FI > bk implies
FQ > bk and thus (kþ 1)-particle entanglement. This
allows us to establish an intimate connection between
scrambling of quantum information and the buildup of
entanglement. Namely, the ϕ dependence of the OTOC
FtðϕÞ encodes information about the entanglement content
of the state ρ̂t. We also note that, for thermal states, QFI can
be directly related to dynamic susceptibilities, as demon-
strated in Refs. [66] [see explicitly Eq. (4)] and [67], which
are well-known signatures of quantum critical behavior and
phase transitions. Moreover, the QFI is a measure of
macroscopic coherences, such as appear in “cat states” [65].
Second, each individual Im by itself can be used as an

entanglementwitness. The quantityFI only characterizes the
second moment of the MQC spectrum or, equivalently, only
depends on the small-ϕ behavior of themeasured observable
FtðϕÞ, while the MQC spectrum, i.e., each individual Im,
contains much more detailed information about the state ρ̂.
To show that individual Im canwitness entanglement, we use
two properties [45]: First, the Im are convex, or nonincreas-
ing, under mixing [Im½pρ̂1 þ ð1 − pÞρ̂2� ≤ pImðρ̂1Þ þ
ð1 − pÞImðρ̂2Þ for m ≠ 0]. Second, coherences of product
states can be obtained from those of the constituent sub-
ensembles by Imðρ̂A ⊗ ρ̂BÞ ¼

P
kImþkðρ̂AÞIm−kðρ̂BÞ. With

these two properties, one can, for a given m, bound the
maximal Im achievable on the set of separable states.
In the following, we outline how to derive such bounds

for systems of spin 1=2 particles. The detailed proof can be
found in the Supplemental Material [45]. The spins are
described by Pauli operators σ̂αj , α ¼ x, y, z, j ¼ 1;…; N,
with the eigenstates of σ̂zj denoted by j↑ij and j↓ij. We
calculate the maximal Im achievable with a separable state.
Without loss of generality, we choose Â ¼ Ŝz ¼

P
jσ̂

z
j=2

[68]. It follows from the convexity that the maximum Im is
assumed for pure states, which for separable states take the
most general form ⨂jð ffiffiffiffiffipj

p j↑ijþeiφj
ffiffiffiffiffiffiffiffiffiffiffiffi
1−pj

p j↓ijÞ. From
the rule for building tensor products, it follows that Im is
independent of φj and is a quadratic polynomial in the pj.
Noting that Im is invariant under pj → 1 − pj, the maxi-
mum is assumed when all pj are either extremal (zero or

one) or equal to 1=2. For such a state with Nþ spins in the
equal superposition state (p ¼ 1=2), Im can be calculated
analytically and optimized numerically with respect to Nþ,
which yields

Imax;sep
m ¼ max

Nþ∈f0;…;Ng
ð2NþÞ!

4NþðNþ −mÞ!ðNþ þmÞ! : ð4Þ

Thus, if for a given state ρ̂ and rotation generated by Â, one
has Im > Imax;sep

m for some m, then ρ̂ must be entangled.
Note also that IN is a witness of genuine N-partite
entanglement [69].
We now illustrate these results by applying them to the

specific case of collective spin models. We consider a
system of N spin 1=2 particles and the coherences with
respect to the collective spin operator Â ¼ Ŝn ¼ P

jŝj · n,
with ŝj ¼ ðσ̂xj ; σ̂yj ; σ̂zjÞ=2 and a unit vector n ¼ ðnx; ny; nzÞ.
Thus, the spectrum of Â consists of the (half) integers
M ¼ −N=2;…; N=2, and we define the mth order coher-
ence ρ̂m as the block of the density matrix spanned by
jϕMihϕMþmj, where jϕMi are the eigenstates of Â with
eigenvalue M. We study an all-to-all transverse-field Ising
model

Ĥint ¼ −J=NŜ2x − ΩŜz; ð5Þ

where the spins are initially prepared in jψ0i ¼ j↑i⊗N . In
the absence of decoherence, the dynamics is restricted to
the symmetric Dicke manifold, which makes it very easy to
numerically simulate the dynamics of large numbers of
spins.
In Fig. 2, we illustrate the time evolution of the

coherence spectrum Im for zero and nonzero transverse
field. The QFI per particle, shown as a black line, is
proportional to the variance of the coherence spectrum. The
figure shows that the Im surpass the bounds for separable
states in large parts of the spectrum. A complex pattern of
self-interference emerges as soon as the coherences become
distributed across the entire spectrum and the initially
Gaussian state completely delocalizes in spin space. The
two snapshots on the right show a relatively short evolution
time, where ρ̂t is a spin-squeezed near-Gaussian state, and a
longer time, where the state becomes clearly non-Gaussian
and the Im develop an intricate structure for both the pure
Ising and the transverse-field Ising case. This snapshot
corresponds to the longest time that has been measured
experimentally for these parameters in [39]. At this time,
the Im fall off at most linearly with m, while the bound
decreases exponentially [cf. Eq. (4)]. This means that the
degree (Im=I

max;sep
m ) to which the entanglement bound is

violated increases exponentially with m.
Next, we discuss the impact of decoherence for an

example relevant to recent trapped-ion experiments
[39,70]. We find that decoherence can substantially reduce
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the state overlap FtðϕÞ. However, for the parameters of
Ref. [39], detecting entanglement should be feasible.
The main source of decoherence in these experiments is
off-resonant light scattering, which can be captured by
including Lindblad terms in the master equation [45].
Specifically, we consider elastic Rayleigh scattering, which
leads to coherence decay with rate Γel, and Raman
scattering, i.e., incoherent transitions from j↓i to j↑i
(Γdu) and vice versa (Γud). We emphasize that if
Γdu ¼ Γud, which is typically the case in the trapped-ion
experiments, tr½ ρ̂0ρ̂f� ¼ tr½ ρ̂tŴðϕÞρ̂tŴ†ðϕÞ� in Eq. (1) still
holds, and thus the Im can still be detected using the time
reversal scheme [45].
The role of decoherence is illustrated in Fig. 3, where the

choice of parameters is motivated by the experimental
capabilities demonstrated in Ref. [39]. Typical experimental
parameters are J≲5kHz, t≲1ms, and a total decoherence
rate Γ ≈ 60 s−1, dominated by Γel. Numerical simulations

were performed using an efficient density matrix symmet-
rization approach [45].
Comparing FQðρ̂t; ÂÞ=N (black line) with the bound

FIðρ̂t; ÂÞ=N (red dashed), one recovers FQðρ̂t; ÂÞ ¼
FIðρ̂t; ÂÞ for pure states (Γ ¼ 0), but as decoherence rates
are increased, the bound quickly becomes less tight. While
the QFI decays slowly at small Γt, the decay of the bound
FI ∼ e−NΓt is N-fold enhanced compared to the single-
particle decay rate Γ because the global state overlap
tr½ ρ̂0ρ̂f� decays with this rate. The inverse spin-squeezing
parameter [71], which also provides a lower bound on QFI,
does not witness any entanglement for the case of Fig. 3(b),
as the state is already strongly oversqueezed.
Figures 3(c) and 3(d) show the coherence spectra for two

values of Γ. The main effect of dephasing is a global decay
of the Im with e−NΓt, approximately independent of m, as
expected at short times in an initially pure system.
Nevertheless, even for strong dephasing, the Im still violate
the entanglement bound for sufficiently large m, since the
bound decreases exponentially with m, while the Im decay
much more slowly. Therefore, even in the presence of
single-particle decoherence processes, we observe that the

(a) (b)

(c) (d)

FIG. 3. (a),(b) Optimal QFI (black) and the lower bound FIðtÞ
(red dashed) as a function of the total decoherence rate
Γ ¼ ðΓud þ Γdu þ ΓelÞ=2, scaled by J=N, and pure Ising dynam-
ics (Ω ¼ 0). The relative size of the individual decoherence rates
for spontaneous emission and elastic scattering have been chosen
Γud∶Γdu∶Γel ¼ 1∶1∶10. In the pure case (Γ ¼ 0), the bound
coincides with the actual QFI. FIðρ̂t; ÂÞ decays as exp½−NΓt�,
much faster than the QFI. The parameter choices are motivated by
the parameters of Ref. [39], which corresponds to typical values
of (a) J ¼ 2.9 kHz and t ¼ 0.6 ms and (b) J ¼ 5.8 kHz and
t ¼ 1.2 ms. N ¼ 48 spins have been used. (c),(d) Coherences Im
for two different dephasing rates in each case. Increasing the
incoherent processes by a factor of 2 [comparing (c) with (d)], the
coherences globally decrease, but a violation of the entanglement
bounds (dashed) is still found at large m. For all values of Γ, the
QFI is calculated with respect to the rotation axis n that is optimal
for Γ ¼ 0.

FIG. 2. MQC spectra for evolution under the Ising (a) and
transverse-field Ising (b) Hamiltonian as a function of the
evolution time for N ¼ 48 spins. The QFI per particle is shown
on top of the density plot as a solid line. (kþ 1)-particle
entanglement is detected if FQ=N > bk=N and, in the pure case,
FQ ¼ FI . The direction of the rotation axis n is optimized for
each t. The pixels corresponding to those Im that violate the
bound for separable states are marked with a dot. At late times
reflection at the boundary of the MQC spectrum at m ¼ N leads
to self-interference and fragmentation of the coherence spectrum.
(Right) The coherence spectrum (red solid) and entanglement
bounds (black dashed) at specific times, indicated by the dashed
lines (left). The gray shading shows for which m the bounds are
violated.
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Im remain useful entanglement witnesses in the considered
scenario. Nevertheless, one needs to deal with the exper-
imental challenge of detecting a small signal, especially for
large N. We note, however, that in Ref. [39], MQCs below
10−2 have been resolved.
In summary, we have derived inseparability criteria from

the MQCs and a formal connection between MQCs and the
QFI. Our results demonstrate that MQCs, a specific type of
OTOCs, can serve as an experimentally accessible probe
for detecting scrambling of quantum information and
multiparticle entanglement in mixed states.
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jnj · ŝj, we can just
define the basis of the Hilbert space as a product of the
eigenstates of the local spin operators nj · ŝj, which for-
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