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Exotic topological and transport properties of Weyl semimetals have generated a lot of excitement in the
condensed matter community. Here we show that Weyl semimetals in a strong magnetic field are highly
unusual optical materials. The propagation of electromagnetic waves is affected by an interplay between
the plasmonic response of chiral Weyl fermions and extreme anisotropy induced by a magnetic field. The
resulting magnetopolaritons possess a number of peculiar properties, such as hyperbolic dispersion,
photonic stop bands, coupling-induced transparency, and broadband polarization conversion. These effects
can be used for optical spectroscopy of these materials including detection of the chiral anomaly or for
broadband terahertz or infrared applications.
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Weyl semimetals (WSMs) have unusual electronic and
transport properties originating from the nontrivial top-
ology of the Brillouin zone [1–3]. They have been studied
experimentally, mostly with angle-resolved photoemission
spectroscopy, e.g., [4–6]. The most intensely studied
phenomena include topologically protected surface states
known as Fermi arcs, the chiral anomaly, or the non-
conservation of the chiral charge in parallel electric and
magnetic fields, and the resulting anomalous magneto-
resistance [7–10]. The optics of WSMs have so far received
relatively less attention. Far-infrared optical spectroscopy
studies of TaAs without the magnetic field have been
recently reported [11]. The conductivity, magnetoplas-
mons, and polaritons in a magnetic field were calculated
recently in a quasiclassical approximation [12–18]. The
strong-field optical conductivity was calculated in [19].
Here we concentrate on the wave propagation inWSMs in a
strong magnetic field, when the electron motion transverse
to the field becomes quantized. We show that hybridization
of magnetoplasmons with electromagnetic (EM) waves in
WSMs leads to fascinating optical phenomena involving
magnetopolaritons, e.g., hyperbolic dispersion, the absence
of Landau damping for strongly localized excitations,
photonic stop bands, coupling-induced transparency, effi-
cient polarization conversion, and pulse compression, to
name a few. We show that optical spectroscopic techniques
provide a straightforward and “clean” way of detecting
topological properties of low-energy electron states and in
particular the chiral anomaly. Moreover, WSMs show
strong promise for future photonic chips enabling a wide
array of broadband optoelectronic applications, such as
polarizers, modulators, switches, and pulse shapers for
midinfrared through terahertz wavelengths.
Dielectric tensor for a WSM in a magnetic field.—We

consider the material which has only one pair of Weyl

nodes for simplicity, with low-energy excitations around
each node described by the Weyl Hamiltonian,

H ¼ χℏvFσk: ð1Þ

Here χ ¼ �1 is the chirality index, σ is a 3D vector of Pauli
matrices, k is the 3D quasimomentum of electrons counted
from the Weyl node, and we assumed an isotropic electron
dispersion (scalar constant vF). In a strong magnetic field
oriented along the z axis, the 3D conical spectrum of
quasiparticles near each node is split into Landau-level
(LL) subbands Wn labeled by the quantum number n,

Wn ¼ sgnðnÞℏvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jnj
l2b

þ k2z

s
for n ≠ 0; ð2Þ

WðχÞ
0 ¼ −χℏvFkz; ð3Þ

where lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the magnetic length. The electron

wave functions are given in [20]. We assume that the field is
strong enough so that W1 −W0 at kz ¼ 0 is much larger
than the LL broadening determined by disorder.
The salient feature of the electron spectrum is the

presence of chiral electron states with 1D linear dispersion
at n ¼ 0 LL. The n ¼ 0 electrons near each node are able to
move only in one direction, depending on the sign of χ and
neglecting internode scattering. The majority of peculiar
optical properties of WSMs originates from the response
of these electron states and its interplay with inter-LL
transitions.
The dielectric tensor for chiral fermions in WSMs has a

general structure typical for a magnetized electron-hole
plasma,
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ϵij ¼

0
B@

ϵ⊥ ig 0

−ig ϵ⊥ 0

0 0 ϵzz

1
CA; ð4Þ

where i; j ¼ x, y, z. However, the expressions for its
components and the resulting optical response are far from
typical. Consider first the longitudinal component ϵzz ¼
ϵb þ 4πiσzz=ω, where ϵb is the background dielectric
constant of a crystal. The conductivity σzz can be found
by calculating the linear response to the longitudinal field
Ez ¼ Re½Eeiqzz−iωt�. It is convenient to define the optical
field through the scalar potential ϕ ¼ Re½Φeiqzz−iωt� as
E ¼ −iqzΦ. We will assume for simplicity that the Fermi
energy for each chirality is between n ¼ −1 and n ¼ 1 and
the temperature is low enough so that the states with n ≠ 0
are either completely filled or empty. The general result for
an arbitrary position of the Fermi level is given in [20].
Note also that for the longitudinal field E∥B the transitions
between the Landau levels are forbidden in the electric
dipole approximation. The resulting linearized density

matrix equation for the density matrix elements ρðχÞkk0 for
each chirality is

− iωρðχÞkz;k0z
þ i

WðχÞ
0 ðkzÞ −WðχÞ

0 ðk0zÞ
ℏ

ρðχÞkz;k0z

¼ −
i
ℏ
eΦhn ¼ 0; kzjeiqzzjn ¼ 0; k0zi½fðχÞ0 ðkzÞ − fðχÞ0 ðk0zÞ�;

ð5Þ
where fðχÞ0 ðkzÞ are populations at n ¼ 0 unperturbed by the
optical field and we neglected relaxation, which will be
added later. The matrix element in Eq. (5) is calculated
using the electron states in a magnetic field [20]; it is equal
to the δ function δkz−qz;k0z . The solution of Eq. (5) in the limit
kz ≫ qz is

ρðχÞkz;kz−qz ¼
ieE

ω − χqzvF

∂fðχÞ0 ðkzÞ
ℏ∂kz : ð6Þ

The complex amplitude of the Fourier component of the
electric current jz ¼ Re ~Jeiqzz−iωt is given by

~J ¼
X
kz;χ

ðjzÞðχÞkz−qz;kzρ
ðχÞ
kz;kz−qz ; ð7Þ

where the matrix element of the spatial Fourier component
of the current is

ðjzÞðχÞk0z;kz
¼ −ehn ¼ 0; k0zje−iqzzχvFσzjn ¼ 0; kzi ð8Þ

and the sum can be replaced by integration. The resulting
longitudinal component of the conductivity tensor is

σzz ¼
ie3BvFω
2π2ℏ2c

1

ω2 − q2zv2F
; ð9Þ

where the B dependence appeared due to the density of
states in a quantizing magnetic field. The longitudinal
dielectric tensor component therefore takes the form

ϵzz ¼ ϵb − ω2
p=ðω2 − q2zv2FÞ: ð10Þ

This result can be also obtained from the kinetic equation
[20]. This expression has several peculiar features. First,
since the electrons at n ¼ 0 can move only in one direction
with the same velocity vF, they cannot bunch in the velocity
space and there is no Landau damping. Mathematically, the
Landau damping emerges due to contribution from the pole
in the integral over electron momenta in the linear con-
ductivity. However, in our case there is no pole in the
integral in Eq. (7) since the denominator in Eq. (6) does not
depend on the electron momentum.
Second, the effective plasma frequency in Eq. (10) does

not depend on the electron density,ω2
p ¼ ð2α=πÞðeBvF=ℏÞ,

where α ¼ e2=ℏc; see also [9,12]. In the limit of a uniform
electric field qz ¼ 0, Eq. (9) immediately gives the chiral
anomaly. Indeed, if only n ¼ 0 electrons are involved, the
chiral current jchir ¼ ∂½Nðχ¼þ1Þ − Nðχ¼−1Þ�=∂t is related to
the charge current in a uniform but time-dependent field
E∥B as ∂jz=∂t ¼ −evFjchir. This gives the chiral anomaly
current jchir ¼ −e2EB=ð2π2ℏ2cÞ, in agreement with pre-
vious results; see, e.g., [2,3] for review.
The dispersion equation.—EM waves incident on a

magnetized WSM propagate as eigenmodes that can be
called magnetopolaritons. They are the solutions of
Maxwell’s equations for plane waves with the dielectric
tensor from Eq. (4). For the photon wave vector q in the
ðxzÞ plane making an angle θ with the magnetic field
direction along the z axis, they can be written as

0
BB@

ϵþ − 1
2
μ2ð1þ cos2θÞ 1

2
μ2sin2θ 1ffiffi

2
p μ2 sin θ cos θ

1
2
μ2sin2θ ϵ− − 1

2
μ2ð1þ cos2θÞ 1ffiffi

2
p μ2 sin θ cos θ

1ffiffi
2

p μ2 sin θ cos θ 1ffiffi
2

p μ2 sin θ cos θ ϵzz − μ2sin2θ

1
CCA
0
B@

Eþ
E−

Ez

1
CA ¼ 0; ð11Þ

where μ2 ¼ c2q2=ω2, ϵ� ¼ ϵ⊥ � g, and E� ¼ 1=
ffiffiffi
2

p ðEx � iEyÞ.
Longitudinal propagation.—For the waves propagating strictly along the magnetic field, i.e., θ ¼ 0, the solution to

Eqs. (11) consists of two eigenmodes with transverse polarization (“photons”),

PHYSICAL REVIEW LETTERS 120, 037403 (2018)

037403-2



μ2L;R ¼ ϵ�;EL;R ¼ 1ffiffiffi
2

p E�ðx0 � iy0Þ; ð12Þ

and the wave with the longitudinal polarization E ¼ Ezz0
and dispersion equation ϵzz ¼ 0 (“plasmon”). The plasmon
dispersion is

ω2 ¼ ω2
p

ϵb
þ v2Fq

2: ð13Þ

We emphasize again that, in contrast to “usual” plasmons,
there is no cutoff in Eq. (13) due to Landau damping at
large wave vectors q > ω=vF. Therefore, a much stronger
plasmon localization is allowed, with propagation only
limited by absorption due to scattering on impurities, etc.
For oblique propagation, even at very small angles θ, the

plasmons and transverse waves are coupled to form hybrid
plasmon polaritons. To determine general trends and obtain
analytic results, we neglect the spatial dispersion (qz
dependence) of ϵzz in Eq. (10), which is possible as long
as μ2 sin2 θ ≪ c2=v2F. This is not so restrictive since
c=vF > 100. We also neglect any spatial dispersion in
ϵ� in the dipole approximation.
It is instructive first to consider the case when the Fermi

level is exactly at the Weyl point for both chiralities. In this
case, due to electron-hole symmetry the off-diagonal terms
in Eq. (4) vanish and the dielectric tensor looks like the one
for a uniaxial anisotropic medium. The dispersion equation
for the extraordinary wave, i.e., the one polarized in the (x,
z) plane, can be written as

μ2x
ϵzz

þ μ2z
ϵ⊥

¼ 1: ð14Þ

The transverse components of the dielectric tensor are
always positive, whereas the ϵzz component becomes
negative for frequencies below the plasmon resonance,
ω2 < ω2

p=ϵb. In this case Eq. (14) becomes hyperbolic and
its isofrequency lines are hyperbolae. Therefore, a mag-
netized WSM is a natural hyperbolic material at low-
enough frequencies. Another natural hyperbolic material is
hexagonal boron nitride, where the hyperbolic dispersion
exists in two narrow spectral ranges near the phonon bands
[21]. Otherwise, hyperbolic dispersion is achieved in the
effective medium approximation in metal-dielectric meta-
materials prepared by nanofabrication [22]. It is promising
for numerous applications from superlenses and nano-
imaging to photonic integrated circuits. The plasmon
resonance frequency ω ¼ ωp=

ffiffiffiffiffi
ϵb

p
in WSMs, which deter-

mines the upper bound for hyperbolic dispersion, is in the
THz to far-infrared range for a magnetic field of 1–10 T,
ϵb ∼ 10, and vF ∼ 108 cm=s. It is lower than the inter-LL
absorption edge for all magnetic fields, so the only loss
mechanism is due to scattering on impurities which
depends on the material quality.
The ordinary wave in this limit is linearly polarized along

the y axis and has a standard dispersion μ2 ¼ ϵ⊥.

Figure 1 shows the dispersion (real part of μ) for the
extraordinary waves for several different propagation
angles θ. Far from inter-LL transitions, we can neglect
any dispersion in the transverse part of the dielectric tensor,
assuming ϵ⊥ ¼ ϵb ∼ 10. We also added the scattering rate
as an imaginary part of frequency (ωþ iγ) in the first term
of Eq. (5) and took γ to be 0.01 of the plasmon resonance
frequency ωres ¼ ωp=ϵ

1=2
b . For longitudinal propagation

θ ¼ 0 the photon dispersion is trivial, μ ¼ ffiffiffiffiffi
ϵb

p
. For any

nonzero angle, plasmons and photons hybridize. At the
hybrid plasmon-polariton resonance μ diverges in the
absence of dissipation. The stop band appears between
the hybrid resonance and plasmon resonance. It is defined
by the condition μ2 < 0, so that Re½μ� ¼ 0 and the wave
cannot propagate. At the boundaries of the stop band Re½μ�
goes through the value of 1 with a large derivative, leading
to a small group velocity vgr ≪ c. This means that a layer of
WSM is able to compress a pulse incident from vacuum by
a factor c=vgr. All spectral features are tunable by varying
the magnetic field or the angle θ.
Going back to the general case of an arbitrary Fermi

level, Eqs. (11), and arbitrary values of g leads to a
biquadratic dispersion equation for μ,

μ4

2
½ðϵþ þ ϵ−Þsin2θ þ 2ϵzzcos2θ�

−
�
ϵþϵ−sin2θ þ

1

2
ϵzzðϵþ þ ϵ−Þð1þ cos2θÞ

�
μ2

þ ϵþϵ−ϵzz ¼ 0: ð15Þ

The polarization coefficients of the normal modes are

E�
Ez

¼
− 1ffiffi

2
p μ2 sinθ cosθðϵ∓ −μ2Þ

ϵþϵ− − 1
2
μ2ð1þ cos2θÞðϵþ þ ϵ−Þþμ4cos2θ

: ð16Þ

Equations (15), (16), and (10) provide a complete
description of the electromagnetic wave propagation in
WSMs. They can be plotted numerically or solved

θ = π /4

θ = π /6

θ = π /8

θ = π /16

θ = 0

0.6 0.8 1 1.2 1.4
0

5
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15

ω /ω res

R
e

[μ
]

FIG. 1. Dispersion [real part of μðωÞ] of the extraordinary
waves in a magnetic field of 10 T for several different propagation
angles θ.
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analytically, leading to cumbersome formulas. In the low-
temperature limit we obtain analytic expressions for all
components of the dielectric tensor, see [20]. Leaving
detailed numerical studies to future publications, here we
highlight the most interesting cases. Note that a finite
separation between Weyl nodes in momentum space by a
vector 2b creates an additional anisotropy vector and gives
rise to an additional gyrotropic effect g ∝ b [23]. Therefore,
the dispersion shown in Fig. (1) is valid only if this
additional g is small. This will be the case when the
Weyl semimetal is created by applying an external mag-
netic field to a Dirac semimetal, so that the separation of
Weyl points is only due to a Zeeman-type interaction which
is typically small. We also note that the expressions for the
magnetopolariton dispersion for a nonzero g, Eqs. (15), are
analytic functions around g ¼ 0, so the dispersion curves in
Fig. (1) will change little when g is small. The most
significant effect of a nonzero g is the appearance of an
elliptical polarization, Eq. (16), instead of the linear one
when g ¼ 0.
Coupling-induced transparency.—For quasilongitudinal

propagation, sin2 θ ≪ 1 and plasmon-polariton hybridiza-
tion occurs in the vicinity of the plasmon resonance,
jϵzzj ≪ 1. In this case the approximate solution of Eq. (15) is

μ21;2 ¼
1

ðϵþ þ ϵ−Þsin2θ þ 2ϵzz
½ϵþϵ−sin2θ þ ϵzzðϵþ þ ϵ−Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵþϵ−sin2θÞ2 þ ϵ2zzðϵþ − ϵ−Þ2

q
�: ð17Þ

The polarization coefficients become

K� ¼ E�
Ez

¼
− 1ffiffi

2
p μ2 sin θ

ϵ� − μ2
: ð18Þ

In the “nongyrotropic” limit when EF ¼ 0 and ϵþ ¼
ϵ− ¼ ϵ⊥, the extraordinary wave has dispersion

μ22¼
ϵzzϵ⊥

ϵ⊥sin2θþϵzz
; Kþ¼K−¼−

1ffiffiffi
2

p ϵzz
ϵ⊥ sinθ

: ð19Þ

The hybrid resonance corresponds to the vanishing real part
of the denominator for μ22 in Eq. (17) or (19), when jμ22j ≫ 1.
The effect of coupling-induced transparency emerges

near the plasmon resonance, where μ2 can be of the order of
1 or smaller. When the angle θ is not too small, jϵzzj ≪ 1,
sin2 θ ≪ 1, but jϵ�j sin2 θ ≫ jϵzzj, the dispersion and
polarization of the “extraordinary” wave (the wave that
becomes extraordinary if EF ¼ 0) are simply

μ22 ¼
ϵzz
sin2θ

;
Ex;y

Ez
¼ −

ϵzz
2 sin θ

ϵ− � ϵþ
ϵþϵ−

: ð20Þ

In this case one can have jμ2j ≪ ϵ� whereas the electric
field of the wave is directed almost along the magnetic
field, i.e., still quasilongitudinal. Note that μ22 in Eq. (20)

depends only on the ϵzz component, which means that the
propagation is not affected at all by the resonant inter-LL
absorption losses described by the imaginary parts of ϵ�.
The medium effectively becomes transparent for this wave.
More accurately, its losses are determined only by the
imaginary part of ϵzz, i.e., disorder-related scattering.
Within the transparency band, strong plasmon-photon
coupling forces the polarization of the wave to be oriented
almost along B, and therefore it is nearly decoupled from
the transitions between LLs. The narrow band of trans-
parency within a broad line of inter-LL absorption is
defined by the range of frequencies where jϵzzj is small
enough, namely, jϵzzj ≪ jϵ�j sin2 θ. The situation is similar
to the electromagnetically induced transparency (EIT) [24],
only in the case of EIT the coupling between two quantum
oscillators is provided by a coherent EM drive; see the
comparison in [25]. The transparency will be visible if the
disorder-related losses determined by Imϵzz are lower
than the inter-Landau level absorption losses determined
by Imϵ�. Introducing the electron scattering rate γ
in ϵzz, one can derive the visibility condition asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ðω sin2 θÞ

p
< Imϵ�. The value of γ depends on the

particular material, material quality, and temperature. For
example, far-infrared spectroscopy of TaAs [11] (without
the magnetic field) found the scattering time varying
between 3 and 0.4 ps from low to room temperature. A
value of Imϵþ ∼ 3–5 around ℏω ∼ 100 meV as in Fig. 2
would lead to the visibility condition sin θ > 0.01–0.03.
In the same limit the “ordinary” wave has the dispersion

μ21 ¼ ð2ϵþϵ−Þ=ðϵþ þ ϵ−Þ and elliptical polarization in the
plane of vectors q and y0: Ex=Ez ¼ sin θ and Ey=Ez ¼
½iðϵþ þ ϵ−Þ�=ðϵþ − ϵ−Þ sin θ.
Intersubband transitions and optical detection of the

chiral anomaly.—So far we considered peculiar optical
properties of WSMs due to massless 1D chiral fermions at
the n ¼ 0 LL. Here we show that resonant inter-LL
absorption from n ¼ 0 to n ≠ 0 states provides another
sensitive method of studying chiral fermions near Weyl
nodes and in particular, detecting the chiral anomaly.
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FIG. 2. Absorption spectrum for LHC (solid line) and RHC
(dashed line) polarizations in a magnetic field B ¼ 10 T at zero
temperature, the Fermi energy of 60 meV, and the relaxation
constant γ ¼ 1 meV.
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Consider the propagation of transverse modes in the
Faraday geometry when the eigenmodes are left-hand or
right-hand circularly polarized (LHC or RHC). The deri-
vation of the conductivity is outlined in [20]. Figure 2 gives
an example of the absorption spectrum at low temperatures
when the Fermi level EF ¼ 60 meV is between n ¼ 0 and
n ¼ 1 LLs and has the same value for both chiralities.
Absorption edges of the lowest-energy transitions 0 → 1,
then −1 → 0, −2 → 1, and −1 → 2 are clearly visible in
different polarizations (the last two transitions coincide). In
particular, there is a broad range of frequencies between 50
and 200 meV when only the LHC polarization is absorbed.
Therefore, a several-μm-thin WSM film can serve as a
broadband polarizer converting from linear into circular
polarization. Note that both the frequency bandwidth and
the polarization coefficient are tunable by a magnetic field
and/or Fermi level position. Other obvious applications
include optical isolators and saturable absorbers.
Figure 3 shows the evolution of this spectrum when a

constant voltage is applied parallel to the magnetic field,
which shifts the Fermi levels for the two chiralities by
�30 meV. Here we assumed that before applying bias, the
Fermi energy was equal to 60 meVat both Weyl points. As
is clear from Fig. 3, when a voltage is applied, an additional
absorption edge appears in the spectrum for each polari-
zation, which will be clearly distinguishable as long as the
magnitude of the Fermi energy shift is larger than kBT.
Note that this behavior and the possibility of the optical
detection of the chiral anomaly was predicted in Ref. [16].
In conclusion, we showed that unique topological proper-

ties of low-energy quasiparticles in WSMs give rise to a
plethora of highly unusual magneto-optical effects, which
provide an efficient way of studying these fascinating
materials and can be utilized in future photonic devices in
the terahertz-through-midinfrared range. All effects are
broadly tunable by varying the magnetic field, electric bias,
or thepropagation angle.Wehope that our studywill stimulate
further experimental work in this rapidly developing field.
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