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We describe electron spin resonance in a quantum spin liquid with significant spin-orbit coupling. We
find that the resonance directly probes spinon continuum, which makes it an efficient and informative probe
of exotic excitations of the spin liquid. Specifically, we consider spinon resonance of three different spinon
mean-field Hamiltonians, obtained with the help of projective symmetry group analysis, which model a
putative quantum spin liquid state of the triangular rare-earth antiferromagnet YbMgGaO4. The band of
absorption is found to be very broad and exhibit strong van Hove singularities of single spinon spectrum as
well as pronounced polarization dependence.
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Introduction.—Electron spin resonance (ESR) and its
variants in magnetically ordered systems—ferromagnetic
and antiferromagnetic resonances—represent one of the
most precise and frequently used spectroscopic probes of
excitations of magnetic media. The essence of the magnetic
resonance technique consists of measuring absorption of
electromagnetic radiation (usually in the microwave range
of frequencies) by a sample material that is (typically)
subjected to an external staticmagnetic field. The absorption
is caused by coupling of magnetic degrees of freedom to the
magnetic field of the electromagnetic wave. Given the very
large wavelength of the microwave, the ESR absorption is
driven by zero wave vector (q ¼ 0 or vertical) transitions
between states with different Sz projections of magnetic
dipole moment on the direction perpendicular to the mag-
netic field of the electromagnetic (EM) radiation.
In a spin system with isotropic exchange, the absorption

spectrum of an ac magnetic field is a δ-function peak at the
frequency equal to that of the Zeeman energy, independent
of the exchange interaction strength. This is a consequence
of the fact that, at q ¼ 0, EM radiation couples to the total
magnetic moment, which for an SU(2) invariant system
commutes with the Hamiltonian [1]. Therefore, any
deviation of the absorption spectrum from the δ-function
shape implies violation of the spin-rotation symmetry,
caused either by anisotropic terms in the Hamiltonian
(explicit symmetry breaking) or by the development of
long-range magnetic order below the critical temperature
(spontaneous symmetry breaking). This is the key reason for
ESR’s utility.
The goal of our work is to explore applications of ESR to

a highly entangled phase of magnetic matter—the quantum
spin liquid (QSL) [2]. This intriguing novel quantum state
manifests itself via nonlocal elementary excitations—spi-
nons—which behave as fractions of ordinary spin waves.
The local spin operator becomes a composite of two or
more spinons, which immediately implies that dynamic

spin susceptibility measures the multispinon continuum. In
principle, the best probe of the spinon continuum is
provided by inelastic neutron scattering, which probes
spinons at finite wave vector q and frequency ω. By
now, several textbook-quality experiments have provided
us with unambiguous signatures of multiparticle continua
[3–5]. In practice, however, such state of the art measure-
ments require large high-quality single crystals, which
quite frequently are not available.
We posit here that ESR, with its exceptionally high-

energy resolution, represents an appealing complimentary
spectroscopic probe of spinons—spinon magnetic reso-
nance (SMR). The key requirement for turning it into a full-
fledged probe of spinon dynamics consists of the absence
of spin-rotational invariance. This requirement stems from
the aforementioned “insensitivity” of ESR to the details of
excitations spectra in SU(2) invariant magnetic materials.
Note that the SU(2) invariance is, at best, a theoretical
approximation to the real world materials which always
suffer from some kind of magnetic anisotropy.
Moreover, over the past 15 years, the field of QSL has

evolved dramatically away from the spin-rotational invari-
ance requirement explicit in many foundational papers
[6–8]. The absence of spin-rotational invariance has evolved
from the “real world” annoyance to the virtue [2,9,10].
Indeed, the first and still the most direct and unambiguous
demonstration of the gapless QSL phase came from Kitaev’s
exact solution of the fully anisotropic honeycomb lattice
model [11], which does not conserve total spin.
Importantly, a large number of very interesting and not yet

understood materials, such as α-RuCl3 [12], YbMgGaO4

[13,14], Yb2Ti2O7 [15,16], and many other pyrochlores
[17], and even organic BEDT-TTF and BEDT-TSF salts
[18], showing promising QSL-like features are known to
possess significant spin-orbit interaction and are described
by spin Hamiltonians with significant asymmetric exchange
and pseudodipolar terms. It is precisely this class of low-
symmetry spin models we focus on in the present study.
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We illustrate our idea by considering a spin-liquid state
proposed to describe a spin-orbit-coupled triangular lattice
Mott insulator YbMgGaO4. The appropriate spin
Hamiltonian has been argued to be that of an XXZ model
with interactions between nearest (with J ∼ 1 K) and next-
nearest neighbors on the triangular lattice, together with a
pseudodipolar term [19–21] of J�� kind in notations of
[15], between nearest neighbors (J�� ∼ 0.2 K). Most
recently, polarized neutron scattering data were interpreted
in favor of significant Jz� interaction [22]. This
Hamiltonian does not conserve total spin Stot.
Inelastic neutron scattering experiments reveal broad

spin excitations continuum [23,24], consistent with frac-
tionalized QSL with spinon Fermi surface. At the same
time, experimental evidence of significant disorder effects
[21,24–26], capable of masking “pristine” physics of the
material, is mounting.
Our goal here is to add to the ongoing discussion on the

nature of theground state ofYbMgGaO4 bypointing out that
ESR can serve as a very useful probe ofQSLwith significant
built-in spin-orbit interactions. We therefore accept spin-
liquid hypothesis and focus on fermionic U(1) symmetric
spin-liquid ground states, proposed for this material pre-
viously [23,27]. We rely on the well-established projective
symmetry group (PSG) analysis of possible U(1) spin
liquids [27–31]. The spin-orbital nature of the effective
spin-1=2 local moment of the Yb3þ ion implies that, under
the space group symmetry operations, both the direction and
the position of the local spin are transformed. The symmetry
operations include translations T1;2 along themajor axis a1;2
of the crystal lattice, a rotation C2 by π around the in-plane
vector a1 þ a2, a counterclockwise rotation C3 by 2π=3
around the lattice site, and the (three-dimensional) inversion
I about the lattice site. Following [27], it is convenient to
combine C3 and I operations into a composite one
C̄6 ≡ C−1

3 I. (Note that the original C6 lattice rotation by
2π=6 around the lattice site is not the symmetry of
YbMgGaO4 due to alternating—above and below the
plane—location of oxygens at the centers of consecutive
elementary triangles [13].)
These symmetries strongly constrain possible U(1)

mean-field spinon Hamiltonians and result in eight differ-
ent PSG states, of U1A and U1B kind. U1A states maintain
periodicity of the original lattice and their band structure
consists of just two spinon bands. U1B states are π-flux
states with doubled unit cell. Equivalently, their band
structure contains four spinon bands. For the sake of
simplicity, we focus on the U1A family in the following
(description of U1B increases algebraic complexity without
adding any new essential physics). The U(1) mean-field
spinon Hamiltonian is parameterized by several hopping
amplitudes: t1;2 describes spin-conserving hopping
between the nearest and the next-nearest neighbors and
t01;2 describes analogous non-spin-conserving hops. PSG
analysis fixes relative phases between hopping amplitudes

on the bonds related by the space group operations (see
Supplemental Material [32] for details of the derivation).
The magnitudes of these hoppings are not determined by
PSG. This requires a separate variational calculation of the
ground state energy, which is not attempted here. We do
expect, on physical grounds, that, for the spin model with
predominant isotropic nearest-neighbor spin exchange and
subleading asymmetric J�� terms, the following estimate
should hold t1 > t01 > t2 > t02.
There are four mean-field Hamiltonians in the U1A

family, labeled byU1AnC2nC̄6
(nC2

; nC̄6
∈ f0; 1g).They have

the simple form

H ¼
X

k

ðf†k↑; f†k↓Þ
�
ωk þ ϵk ηk

η�k ωk − ϵk

��
fk↑
fk↓

�
; ð1Þ

where k-dependent ωk; ϵk; ηk are listed in [32]. Spin-orbit
interaction appears via spin-nonconserving hopping ηk in
(1). The U1A00 state is characterized by finite ωk and zero
ϵk and ηk, while U1A01 and U1A11 have ωk ¼ 0 and
finite ϵk and ηk. In the calculations below, we set t1 ¼ 1
and t01 ¼ 0.8; t02 ¼ 0.3 for U1A11, while t1 ¼ 0 for U1A01
and we choose t01 ¼ 1; t2 ¼ 0.8t01; t

0
2 ¼ 0.4t01 for it. U1A10

turns out to be nonphysical since its Hamiltonian matrix is
zero, t1;2 ¼ t01;2 ¼ 0. The “accidental” nature of the U1A00
state is manifested by the absence of any spin-dependent
hopping in its Hamiltonian—this state happens to be more
symmetric than the spin Hamiltonian it describes and is
characterized by the large Fermi surface [23].
We focus on most physically relevant U1A01 and

U1A11 states, for which ωk ¼ 0. The resulting fermion
bands are easy to find, Eν¼1;2ðkÞ ¼ ð−1ÞνEðkÞ ¼
ð−1Þν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ jηkj2

p
. The U1A11 state possesses symmetry-

protected Dirac nodes at Γ and M points of the hexagonal
Brillouin zone, while U1A01 has additional Dirac nodes at
K points as well.
Interaction with monochromatic radiation linearly polar-

ized along direction n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is
described by VðtÞ ¼ −hðtÞ · Stot, i.e.,

VðtÞ ¼ he−iωtn ·
1

2

X

r

ðf†r↑; f†r↓Þσ
�
fr↑
fr↓

�
: ð2Þ

Within linear response theory, the rate of energy absorption
IðωÞ ¼ −ωχ00n̂ n̂ðωÞjhj2=2 is determined by the imaginary
part of q ¼ 0 Fourier transform of the dynamic suscep-
tibility [1] χn̂ n̂ðt; rÞ ¼ −iΘðtÞh½SrðtÞ · n̂;S0ð0Þ · n̂�i, with
Θ being the Heaviside function. Straightforward calcula-
tion gives

χn̂ n̂ðωÞ ¼
1

4N

X

k

nkα − nkβ
ωþ EαðkÞ − EβðkÞ þ i0

× ðUþ
kσ

aUkÞαβðUþ
kσ

bUkÞβαn̂an̂b: ð3Þ
Here, nkα is the occupation number of the band α,Uk is the
unitary diagonalizing matrix connecting the spinor of
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original fermions to that of the band ones, fk;α ¼
ðUkÞαβbk;β, and summation over repeated indices is
implied. Equation (3) shows that, in the spin-degenerate
U1A00 state, for which nkα ¼ nkβ, the susceptibility is
strictly zero. Therefore, in agreement with general dis-
cussion above, no energy absorption occurs in the absence
of an external magnetic field for this state. The condition
nkα ≈ nkβ is also satisfied at high temperature of the order
of spinon bandwidth (which is of the order of exchange J)
when spinon resonance disappears. We therefore expect the
width of the resonance to increase when the temperature is
lowered. It is worth noting that the lowest temperature of
the ESR study [14] is 1.8 K, which makes it a high-
temperature measurement.
At zero temperature absorption at frequency ω is

possible only via vertical transitions from the filled lower
band (α ¼ 1; nk1 ¼ 1) to the empty upper one (β ¼ 2;
nk2 ¼ 0), and therefore

χ00n̂ n̂ðωÞ ¼ −
π

4N

X

k

δ½ω − 2EðkÞ�ðUþ
kσ

aUkÞ12

× ðUþ
kσ

bUkÞ21n̂an̂b: ð4Þ
After some algebra, the product of matrix elements 12 and
21 of the rotated Pauli matrices in the equation above
simplifies to

χ00n̂ n̂ðωÞ ¼ −
π

4N

X

k

δ½ω − 2EðkÞ�
EðkÞ2 ½ðϵ2k þ η002k Þsin2θcos2ϕ

þ ðϵ2k þ η02k Þsin2θsin2ϕþ jηkj2cos2θ�: ð5Þ
It can be shown [32] that the omitted off-diagonal terms,

containing products n̂xn̂y; n̂xn̂z, and n̂yn̂z, are all zero.
Moreover, terms proportional to cos2 ϕ and sin2 ϕ are
actually equal, so that the absorption only depends on
the azimuthal angle θ with respect to the normal to the
magnetic layer.
Two features of this result are worth noting. First, the

absorption takes place over the wide band of frequencies,
minðEÞ ¼ 0 < ω=2 < maxðEÞ, which covers the full band-
width of two-spinon continuum. Second, Eq. (5) describes
“zero-field absorption,”which does not require any external
static magnetic field B. Both of these are a direct conse-
quence of the absence of spin conservation in Eq. (1).
U1A11 state.—Figure 1 shows scaled absorption inten-

sity, 2IðωÞ=jhj2 ¼ −ωχ00nnðωÞ, for different polarizations.
Polarization dependence is strong. The plot is obtained by
numerical integration of (5), with frequency steps of
Δω ¼ 0.05, over the primitive cell of the reciprocal lattice
[k ¼ ðk1; k2Þ, where k1;2 ∈ ð0; 2πÞ; see [32] for details].
We approximate the delta function by the Lorenzian δðxÞ ≈
π−1d=ðd2 þ x2Þ with d ¼ 0.01. We checked that d ¼ 0.05
results in the same outcome. As expected, and also easy to
check analytically, χ00n̂ n̂ðωÞ ∼ ω at small frequencies. This is
the consequence of Dirac nodes at Γ and M points.

Behavior near the upper boundary, ω ≈ 3
ffiffiffi
3

p
, is determined

by the vicinity of the K point where ϵðKÞ ¼ const, while
ηðKÞ ¼ 0. As a result, one obtains χ00zz ∼ 3

ffiffiffi
3

p
− ω, while at

θ ¼ π=2 susceptibility terminates discontinuously in a
steplike fashion, χ00n̂ n̂ ¼ χ00xx ∼ Θð3 ffiffiffi

3
p

− ωÞ. The rounding
of the step-function behavior in Fig. 1, for θ ≠ 0, is caused
by the finite width of the numerical delta function used in
the integration over the Brillouin zone. The peak in the
middle of the absorption band, at ω ≈ 2.43, is caused by
the van Hove singularity, of the saddle point kind, of EðkÞ
at k0 ¼ ðk0; 2π − k0Þ and symmetry-related points. Here,
k0 ≈ 1.97 and Eðk ≈ k0Þ ≈ 1.215þ 1.31ðk1 þ k2Þ2−
0.23ðk1 − k2Þ2. The saddle point produces logarithmically
divergent contribution, χ00n̂ n̂ ∼ ln jω − 2.43j, which matches
numerical data in Fig. 1 perfectly.
U1A01 state.—SMR of this phase is shown in Fig. 2. It is

seen to host two van Hove singularities, which can be

FIG. 1. Plot of 2IðωÞ=jhj2 vs ω=t1 for different polarizations
θ ¼ 0 (blue dots), π=4 (orange squares), and π=2 (green
rhombi) for U1A11 state. The inset shows spinon band
structure along the high-symmetry path Γ-K-M-K-Γ in the
Brillouin zone. The vertical red line illustrates optical transi-
tions between spinon bands.

FIG. 2. Plot of 2IðωÞ=jhj2 vs ω=t01 for different polarizations
θ ¼ 0 (blue dots), π=4 (orange squares), and π=2 (green rhombi)
for U1A01 state. The inset shows spinon dispersion along the
path in Fig. 1.
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qualitatively understood as a direct consequence of the
additional, in comparison with the U1A11 state, Dirac cone
in the spinon dispersion at the K point. The presence of the
symmetry-protected node at the K point results in a
stronger variation of spinon dispersion in the Brillouin
zone and causes the appearance of additional saddle points.
U1A11 state in magnetic field.—An external magnetic

field adds further variations to the spinon absorption
intensity. We illustrate this with the case of U1A11 state
subject to magnetic field B ¼ Bzẑ along the normal to the
magnetic layer. It should be noted that PSG analysis
underlaying our consideration assumes time-reversal
(TR) symmetry. Therefore, we treat the magnetic field
perturbatively, by coupling it to the local TR-odd combi-
nation of spinons, which is just BzSzr ∼ Bzf

†
rασ

z
αβfrβ. Thus,

magnetic field enters (1) via ϵk → ϵk − Bz=2 and gaps out
Dirac nodes. The minimal excitation energy becomes
minðEÞ ¼ Bz=2 and absorption intensity acquires threshold
behavior IðωÞ ∼ Θðω − BzÞ. This behavior is illustrated in
Fig. 3, which also shows development of additional spectral
features at ω ≈ 4.2; see [32]. The in-plane magnetic field
lowers symmetry of the spin Hamiltonian further and its
consideration is left for future studies.
This unusual response should be contrasted with that of

the large-Fermi-surface state U1A00. Here, B ¼ Bzẑ leads
to the Zeeman splitting of spinon up- and down-spin bands
Eν ¼ ωk ∓ Bz=2, and therefore, according to (3), one finds
the standard result for magnetically isotropic media
χ00n̂ n̂ðωÞ ∼ sin2θδðω − BzÞ. This is consistent with the earlier
analysis of [33], where a weak magnetic field B ¼ Bzẑ was
added to the mean-field Hamiltonian similarly. Off the Γ
point, i.e., for q ≠ 0, one finds broad continuum corre-
sponding to the spinon particle-hole excitations [33].
Discussion.—Physical arguments leading to Eq. (5) are

very general and rely on the absence of long-range
magnetic order, existence of fractionalized elementary

excitations, which ensure a continuumlike response to
external probes, and significant built-in spin-orbit inter-
action, which leads to nonconservation of spin and makes
zero-field absorption possible in a wide range of frequen-
cies. All of these are very generic conditions, which are
satisfied by essentially every model of spin liquids of U(1)
and Z2 type [but not by spin-conserving SU(2) ones]. The
restriction to low-symmetry spin liquids is not really a
handicap, as it turned out that the number of possible spin
liquids with reduced U(1) and Z2 vastly outnumbers that of
SU(2) symmetric ones [30,34,35]. In particular, the SMR
should be present in the celebrated Kitaev’s honeycomb
model [11], as was emphasized in dynamic structure
calculations of [36–39]. There too one can see anisotropic
spin structure factor Saaðq ¼ 0;ωÞ, with Szz ≠ Sxx=yy, and
sharp van Hove singularities in the Majorana fermion
density of states. The similarity is not accidental—it
follows from the linear mapping between Majorana and
projective spinon representations [40,41]. Unlike the sit-
uation described here, in the exactly solvable gapless
Abelian region, dynamic response appears above a finite
threshold energy (which is the energy cost of creating Z2

fluxes). However, generic spin exchange perturbations turn
the response gapless [42], so that Saaðq ¼ 0;ωÞ ∼ ω at low
energy. Resonant inelastic x ray, Raman scattering, and
parametric pumping of the Z2 Kitaev spin liquid results in a
gapless and extended energy continuum too [43–46].
Our theory can be broadly thought of as an extension of

one-dimensional theories of ESR in spin chains with
Dzyaloshinskii-Moriya interactions [1,47–49]. In one
dimension, the fractionalized nature of spinons is very
well established and theories based on them describe ESR
experiments exceedingly well, both in gapless [50–52] and
gapped [53,54] settings.
Another important connection is provided by electric

dipole spin resonance, which describes absorption of EM
radiation in conductors with pronounced spin-orbit inter-
action, which mediates coupling of the ac electric field to
the electron spin [55]. Here, spin-rotational asymmetry
causes strong absorption, which is controlled by the real
part of optical conductivity [56–62].
Somewhat surprisingly, energy absorption due to cou-

pling of spins to the ac electric field is also possible in
strong Mott insulators, provided they are built of frustrated
triangular units, in which virtual charge fluctuations pro-
duce spin-dependent electric polarization [63,64]. Hints of
this physics were recently observed in herbertsmithite and
α-RuCl3 antiferromagnets [65–67].
Simple calculations of SMR presented here are based on

mean-field spinon Hamiltonians derived with the help of
PSG formalism. They do not include gauge fluctuations,
which undoubtedly are present in the theory. These
fluctuations are certain to affect exponents characterizing
sharp features of χ00n̂ n̂ðωÞ, such as, for example, behavior
near the van Hove singularity and/or near the lower or

FIG. 3. Plot of 2IðωÞ=jhj2 vs ω=ð2t1Þ for polarizations θ ¼ 0
(blue dots), π=4 (orange squares), and π=2 (green rhombi) for
U1A11 state in the presence of magnetic field Bz ¼ 1. Note the
appearance of strong van Hove singularity at ω ≈ 4.2t1. The thin
red line shows Zeeman response of U1A00 state.
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upper edge of the two-spinon continuum. (Disorder, in the
form of Mg/Ga mixing, leads to distribution of g factors
[25], which also broadens magnetic response.) In addition,
by analogy with critical Heisenberg chain [68], we expect
four-spinon contributions to the susceptibility to affect the
high-frequency behavior. However, these important effects
cannot reduce spinon absorption bandwidth and eliminate
other outstanding features of the SMR found here. It should
also be noted that SMR is not specific to fermionic spinons
and indeed extension of the theory to bosonic PSG is
possible as well [69,70]. We therefore conclude that spinon
magnetic resonance represents an efficient and informative
probe of exotic excitations of spin-orbit-coupled quantum
spin liquids.
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Note added.—Recent manuscript [71] contains a detailed
comparison of ground state energies of various U(1) PSG
states.
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