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Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of
kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for
the implementation of large dissipationless inductance. We develop the theory of the collective modes in
these superconductors and discuss associated dissipation at microwave frequencies. We obtain the
collective mode spectra dependence on the disorder level and conclude that collective modes become a
relevant source of dissipation and noise in the outer proximity of the SIT.
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A piece of a superconductor is characterized by the phase
of the order parameter φ. Because of the order parameter
Ψ ¼ jΨjeiφ, the state of the superconductor does not
change when φ → φþ 2π even if it is connected to other
superconductors by Josephson junctions. However, for a
superconductor that is also connected to others by a very
long superconducting wire, the change of the phase by 2π
leads to states that are distinguishable even though the
energy due to the phase variations along the wire might be
vanishingly small. In this system a plethora of new physical
effects becomes possible such as the formation of Bloch
states in the Josephson potential, current Shapiro steps, etc.
All these effects require that the phase change by 2π leads
to a state of the same energy but distinguishable from the
original one. Quantitatively, the superconducting wire can
be characterized by the energy E ¼ ð1=2ÞELφ

2, where φ is
the phase difference and EL ¼ ℏ2=ðe2LÞ, and L is the
effective inductance. The energy EL should be much less
than all relevant energy scales; for a typical problem this
translates into L≳ 1 μH. Such a superinductor should be
dissipationless, and as such it should contain no low energy
modes; in particular, it should not form a low frequency
resonator. This limits the geometrical size of the super-
inductor to a few micrometers; for a realistic thin film wire
the width is limited by w≳ 20 nm, which translates into
L□ ≳ 10 nH for the inductance per unit area. The question
is whether such superinductors are physically possible.
An attractive candidate for superinductors is the super-

conductor close to the superconductor-insulator transition
(quantum critical point). One expects that at the transition
the superfluid stiffness ρS ¼ 0 (ρS ¼ ℏ2=e2L□), so if this
transition leads to an insulating state with a large gap, in the
vicinity of it the superfluid stiffness can be arbitrarily small

corresponding to arbitrarily large superinductances.
Generally, there are two mechanisms for the destruction
of the superconductivity by disorder that lead to a quantum
critical point where ρS is exactly zero (for recent reviews
see Refs. [1,2]). The first (fermionic) mechanism attributes
the suppression of the superconductivity to the increase of
the Coulomb interaction, which results in the decrease of
the attraction between electrons and their eventual depair-
ing [3]. In this mechanism the state formed upon the
destruction of the superconductor is essentially a poor
conductor. This mechanism clearly does not lead to the
formation of the superinductance. The alternative (bosonic)
mechanism attributes superconductivity suppression to the
localization of Cooper pairs that remain intact even when
superconductivity is completely suppressed. The theory of
the bosonic mechanism has a long history: this scenario of
the superconductor-insulator transition was suggested long
ago [4–7] but was not developed further until recently [2,8]
when experimental data indicated it might indeed occur in
InO [9–12].
In this Letter we show that as the bosonic supercon-

ductor-insulator transition (SIT) is approached the collec-
tive modes are pushed down to low energies. In BCS theory
the critical temperature of the superconductor, or its low
energy gap, does not depend on the disorder. In the simplest
model of the bosonic SIT the critical temperature does not
depend on the disorder until the latter exceeds some critical
value. At larger values of the disorder the transition
temperature decreases quickly and eventually becomes
zero while the single electron gap ΔP remains constant
[2]. It is natural to associate the regime where the transition
temperature depends on the disorder with the critical
regime of the SIT in the bosonic model. As we show
below, the collective modes are pushed to low energies
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even outside the critical regime. This severely limits the
possible values of the kinetic inductances that can be
achieved in the strongly disordered superconductors close
to the SIT.
Before we give the details of the model of the bosonic

SIT and its low energy properties we discuss its main
physical assumptions and materials in which such physics
might be realized. The main assumption of the bosonic
model is that Coulomb repulsion does not lead to electron
depairing. This might occur if it is screened by the electrons
far from the Fermi surface. In other words, the Coulomb
interaction between superconducting electrons is small due
to a large effective dielectric constant of the material.
Empirically, in this case one expects that superconductivity
occurs against the background of the insulating RðTÞ. This
is the situation in InO, which displays strong insulating
temperature behavior that is followed by superconductivity
at very low T [9–11]. Large dielectric constants, κ ≳ 103,
are expected in superconductors derived from a high-κ host
[13], SrTiO3, such as SrTiO3-LaAlO3 interfaces [14,15] or
Nb-doped SrTi1−xNbxO3 [16]. In the material where the
Coulomb interaction is completely suppressed by a large κ
one expects that Tc and ΔP will initially increase with
disorder due to the electron wave function localization
before the effects of the suppression of Cooper pair
tunneling suppress Tc and ρS leading to the SIT while
the single electron gap ΔP remains large everywhere. Such
unusual behavior (with the maximum of Tc) was indeed
observed in the SrTiO3-LaAlO3 system [15,17,18]. The
increase of Tc followed by an abrupt transition to the
insulating state was also observed in LixZrNCl crystals [19]
as well as in slightly oxidized aluminum wires (also known
as granular aluminum); in the latter the suppression of the
superfluid density is not accompanied by a significant
dissipation at high frequencies [20], pointing towards the
bosonic mechanism. Finally, a likely candidate for this
physics is superconducting semiconductors with a low
density of carriers, such as In-doped PbzSn1−zTe [21,22].
The distinguishing feature of the bosonic SIT is the
different behavior of the tunneling and conductivity gaps,
which allows their experimental identification [23–26].
An excellent probe for the absence of the low energy

modes is provided by the appearance of the coherent phase
slips that are expected in the wires made from thin films
with large ΔP and small ρS. This was indeed observed [27]
in InO wires and other strongly disordered superconductors
that retain a significant single electron gap: NbN and TiN
[28]. However, in all these materials the quality factor
remains low indicating a significant intrinsic dissipation.
While expected for the fermionic suppression mechanism
in NbN [29–31] and TiN [32,33] that leads to the formation
of the subgap states, the reason for the dissipation in InO
remains unclear.
Model.—We consider a simplified model of a pseudo-

gapped superconductor where single-particle excitations

are totally absent so that all electronic degrees of freedom
can be represented in terms of Anderson pseudospins [34]
that describe the population and hopping of localized
electron pairs. In other words, we assume that Δp is larger
than all relevant energy scales of the problem. The low
energy physics is described by

H ¼
X
i

2ξis
z
i −

X
ðijÞ

ðJijsþi s−j þ H:c:Þ; ð1Þ

where the indices i, j enumerate localized single-electron
states, the notation ði; jÞ indicates a pair of connected sites,
the ξi represent their energies, and the spin-1

2
operators si

are related to the electron creation or annihilation operators
aþi;σ; a

−
i;σ by 2szi ¼ aþi;↑ai;↑ þ aþi;↓ai;↓ − 1, sþi ¼ aþi;↑a

þ
i;↓ and

s−i ¼ ai;↓ai;↑. The matrix elements Jij that describe the
hopping of localized Cooper pairs are determined by
single-electron wave functions ψ2

i ðrÞ, which are supposed
to be localized at a relatively long spatial scale:
Jij ¼ ~g

R
d3rψ2

i ðrÞψ2
jðrÞ. In a 3D pseudogapped super-

conductor a typical value of the matrix element Jij depends
in a nontrivial way on the energy difference between the
participating states: ϵij ¼ jξi − ξjj, see Ref. [2]; this
dependence is due to the fractal nature of the nearly critical
(in terms of Anderson localization) electron eigenfunctions.
An effective number Z of localized electron states jðiÞ
coupled to a given state i by hopping matrix elements Jij
depend on the difference between the Fermi energy EF and
the localization threshold Ec; an increase of disorder moves
EF further into the localized part of the spectrum, decreas-
ing Z. The model (1) neglects the effect of the long range
Coulomb interaction that is inconsistent with the bosonic
mechanism (see the Supplemental Material [35]).
Solution.—In order to obtain the analytical solution we

simplify further the model (1). Namely, we assume that all
the sites i, jwhere the spins si are located belong to a Bethe
lattice with coordination number Z ¼ K þ 1 and all non-
zero couplings Jij are equal and connect each spin with its
Z nearest neighbors: Jij ¼ 2g=K; such a normalization is
used to allow for a well-defined limit of K → ∞. Random
variables ξi are distributed independently over sites i with
the flat density PðξÞ ¼ 1

2
θð1 − jξjÞ. Within this model, an

increase of disorder corresponds to the decrease of K. We
have shown previously [36] that within such a model a
standard BCS-type phase transition takes place at very
large K, K ≥ g expð1=gÞ, while at lower (but still large)
values of K spatial fluctuations of the superconducting
order parameter become large and eventually lead to an
unusual kind of a quantum T ¼ 0 phase transition from the
superconducting to the insulating state.
In the present Letter we concentrate upon the low-

temperature properties of a superconducting state at mod-
erately large values of K in the range Kc < K1 < K ≤ K2,
where g ≪ 1 and
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Kc ¼ ge1=ðegÞ; K1 ¼ ge1=2g; K2 ¼
g
4
e1=g: ð2Þ

The region K > K1 is known [36] to possess a usual BCS-
like temperature-controlled superconducting transition with
Tc ¼ Tc0ðgÞ ¼ ½4eC=π�e−1=g and a low-temperature ampli-
tude of the order parameter ΔðT ¼ 0; gÞ ¼ 2e−1=g. At
smaller K the superconducting transition temperature
Tcðg; KÞ is suppressed with respect to Tc0ðgÞ and even-
tually vanishes at K ¼ Kc. In the range Kc < K < K1 local
values Δi of the order parameter fluctuate strongly [36],
with a “fat tail” extending to the range of Δi much larger
than its typical value Δtyp ¼ expðhln jΔijiÞ, which also
vanishes at K → Kc þ 0. At larger K > K1 the order
parameter follows the BCS relation and its spatial fluctua-
tions are relatively weak.
Contrary to expectations atK > K1 there is a whole band

of delocalized low-lying collective excitation modes with a
lower cutoff of their energies ω1ðKÞ growing upon the
increase of K. Moreover, we find a band of localized
collective modes with ω < ω1ðKÞ that extends down to
zero energy as long as K ≤ K2.
We start the derivation of our results by writing the action

for low-ω transverse fluctuations biðωÞ of the order
parameter. These fluctuations are parametrized via phase
rotation of the mean-field solution: ΔiðωÞ ¼ ΔieiφðωÞ ≡
Δi þ biðωÞ with action

A ¼ −
X
i;j

biðωÞĴ−1ij bjðωÞ þ
X
i

b2i ðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2i þ Δ2

i

p
ξ2i þ Δ2

i − ω̄2
; ð3Þ

where ω̄≡ ω=2. At K > K1, Δi ≈ Δ ¼ 2e−1=g. The action
(3) is directly applicable forω ≪ Δ; at energies comparable
to Δ antisymmetric coupling [neglected in Eq. (3)] between
the transverse mode the and longitudinal (gap full) mode
might become relevant. The equation for the collective
mode can be obtained as an extremum of the action (3) with
respect to biðωÞ:

biðωÞ ¼
X
j

JijbjðωÞηjðωÞ;

where ηðωÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2j þ Δ2

q
ξ2j þ Δ2 − ω2

: ð4Þ

At ω ¼ 0 it is satisfied automatically for bi ¼ const × Δ
due to the self-consistency equations for the local order
parameters Δ.
Equations (3) and (4) are general; below, we study the

eigenfunctions of Eq. (4) defined on the Bethe lattice
and employ the method developed in the seminal paper
[37]. To use this method we need to introduce the self-
adjoint linear operator L̂ related to Eq. (4); its matrix
elements are Cij ¼ Jij½ηiðωÞηjðωÞ�1=2. Equations (4) pos-
sess delocalized solutions if the expansion for the

imaginary part of the Green function Ĝ¼ð1̂−ĈþiδÞ−1
in powers of Ĉ is singular. This singularity is indicated by
the nonzero value of the typical imaginary part ðImGiiÞtyp
of the local Green function in the limit δ → 0. We look for
the singularity threshold within the “forward path” approxi-
mation [36,38] equivalent to the “Anderson upper limit”
condition [37]; i.e., we neglect self-energy corrections for
the Green function GiiðωÞ. Each path over the Bethe lattice
that contributes to (ImGii) is traversed twice (forward and
backward). Therefore, the summation over the paths is
equivalent to the calculation of the partition function
ZDPðNÞ for the N-link directed polymer (DP) model with
weights wij ¼ J2ijηiðωÞηjðωÞ defined on nearest-neighbor
links: ZDPðNÞ ¼ P

P

Q
flðPÞg wij.

We need to find an extensive part of the DP free energy
FDPðNÞ ¼ lnZDPðNÞ ≈ Nf at N → ∞; the localization
threshold is determined by the condition hfi ¼ 0, where
the averaging is over the distribution of random ξi. An
equivalent way to calculate f is to use the modified weights
~wij ¼ J2ijη

2
j ; the difference between the corresponding

partition functions ZDP and ~ZDP is concentrated at the
end points of each contributing path and thus does not
contribute to f ¼ limN→∞ð1=NÞFDPðNÞ.
The shortest method to calculate f is to use the replica

trick as described in Refs. [36,38]. It gives

exfðxÞ ≡ K
Z

1

0

dξ

�
g
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
ξ2 þ Δ2 − ω̄2

�2x

¼ 1;
∂f
∂x ¼ 0:

ð5Þ
Here, 0 < x < 1 is an anomalous exponent that measures
the degree of replica symmetry breaking (RSB) for the DP
problem [within usual mean-field theory x ¼ 1 and the
second equation in Eqs. (5) is absent]. The condition
∂f=∂xjx0 ¼ 0 selects typical Green functions of the oper-

ator Ĉ introduced above; the first equation in Eqs. (5) then
leads to fðx0Þ ¼ 0, which indicates a critical point between
the localized domain for fðx0Þ < 0, where the typical
Green function decays upon iterations, and the extended
domain, which corresponds then to fðx0Þ > 0, where linear
iterations diverge and nonlinear terms should be taken into
account to get a stable distribution.
At K ¼ K1 ¼ ge1=2g and ω ¼ 0 the system of equa-

tions (5) can be solved exactly (up to relative corrections
∼e−1=g ≪ 1), with x ¼ 1=2. At slightly large K > K1 and
low energies ω̄ ¼ EΔ we look for the solution assuming
2x − 1≡ ϵ ≪ 1 and E ≪ 1. Expanding the integral in
Eqs. (5) up to second order in ϵ and up to first order in
δK ¼ K − K1, we find [the term ∝ E2 can be omitted in the
second of Eqs. (5)]:

E2 ¼ ϵ
δK
K1

−
ϵ2

24g2
; ϵ ¼ 12g2

δK
K1

; ð6Þ
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leading to the result for the threshold energy in the main
order expansion over δK=K1 ≪ 1:

ω1

2Δ
≡ EðKÞ ¼

ffiffiffi
6

p
g
K − K1

K1

: ð7Þ

Eigenfunctions with ω > ω1 are extended, while those with
lower energies are localized. The numerically obtained
delocalization line for ω1ðKÞ is shown in green in Fig. 1 for
the specific choice of Δ ¼ 10−3, which corresponds to g ¼
0.129 and K1 ¼ 5.85.
To find the domain of the existence of localized

eigenfunctions with low energies ω ≪ Δ, we use another
criterion based upon Eqs. (5). Namely, we look for
solutions of the equation ∂f=∂xjx0 ¼ 0 such that x0 < 1

and fðx0Þ < 0. The condition x0 < 1 guarantees RSB,
which implies the different behavior of typical and average
Green functions. Namely, in the limit δ → 0 the average
imaginary part of the Green function has a finite value,
which implies that the density of states is nonzero in this
regime. The condition fðx0Þ < 0 implies that the wave
function decreases, so this regime corresponds to the
localized states. This band of localized states ends when
x0 coincides with unity: at this point the typical average of
the imaginary part of the Green function hImGðωÞityp

becomes equal to the simple average, hImGðωÞi ¼
πρðωÞ. Because at the same time fðx0 ¼ 1Þ < 0,
hImGðωÞi decays upon iterations over the Bethe lattice,
and ρðωÞ ¼ 0 at the stationary point of these iterations.
Therefore, the boundary of the parameter region with
ρðωÞ > 0 is given by the solution of the equation
∂f=∂xjx0¼1 ¼ 0, where fðxÞ≡ fðx;ω; KÞ is defined in
Eqs. (5). At ω ¼ 0 a straightforward calculation leads to
the result (2); in deriving it we used the equalityR∞
0 ðdt= cosh tÞ ln cosh t ¼ ðπ=2Þ ln 2. At ω > 0 the same
procedure provides the dependence of the spectrum boun-
dary ω2 on K in the region ω ≪ Δ:

K2ðωÞ ¼ K2

Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ω̄2

p ≈ K2

�
1þ 1

2

�
ω

2Δ

�
2
�
: ð8Þ

The numerical solution of the equation ∂f=∂xjx0¼1 ¼ 0

gives the red line in Fig. 1(b). Qualitatively, the appearance
of K2 as one of characteristic values for the coordination
number Z ¼ K þ 1 in our model can be understood by
noticing that at K ≫ K2 the total number of neighbors in
which the local energies ξi ∼ Δ becomes large, so at these
K the system becomes similar to conventional Ginzburg-
Landau superconductor.
Experimentally observable properties.—The spectrum

shown in Fig. 1(b) translates into the microwave properties
of the superconductors. In the vicinity of the transition the
spectrum of delocalized collective modes extends to zero
frequency. Even for K > K1, at which the critical temper-
ature of the superconductor does not experience the sup-
pression due to the quantum critical point, the low energy
modes are delocalized at relatively low frequencies Δ >
ω > ω1ðKÞ resulting in a relatively large intrinsic dissipa-
tion of the superconductor at these frequencies. The reso-
natorsmade from such superconductors exhibits low quality
factors. As the disorder is decreased the delocalized modes
are shifted to higher frequencies. At ω < ω1ðKÞ the oscil-
lation with frequency ω excites only long-living localized
states, so that the dissipation in the superconductor is
suppressed. However, the localized modes extend down
to zero frequencies for K < K2. At any nonzero temper-
atures these low frequency bosonic modes are excited.
Because the relaxation of these modes is slow, their
occupation numbers fluctuate slowly with time. This,
together with the mode-mode interaction, implies that the
frequency of the high energy modes experiences significant
jitter in the range K1 < K < K2. The microwave properties
described above can be compared with the other predictions
of the model (1). Namely, one expects a broadening of the
distribution function at K < K1 sketched in Fig. 1(a) that
was observed in Ref. [12]. Another experimentally meas-
urable characteristic is the behavior of superfluid stiffness
that is proportional toΔ2 in thewhole range ofK considered
here [39]. Finally, we note that the fluctuational conductivity
is given by a slightly modified [40] Aslamazov-Larkin
formula above Tc for K > K2, which can serve as yet

(a)

(b)

FIG. 1. Schematics of the phase diagram, order parameter
distribution function, and collective mode spectra at low T of
strongly disordered superconductors obtained from the solution
of the model (1) in the cavity approximation. At large disorder,
K < K1, the distribution of the order parameter becomes anoma-
lously broad (upper panel) and Tc is rapidly suppressed and
becomes Tc ¼ 0 at K < Kc (lower panel). In the regime of the
critical suppression of Tc, K < K1, delocalized collective modes
exist for all frequencies. For smaller disorder, K1 < K < K2,
very low frequency modes are localized. The modes ω ¼ 0
disappear completely only for K2 < K. The numerical values of
K shown here correspond to the interaction constant g ¼ 0.129,
which gives T ≈ 10−3EF. Arrows indicate the values of K for
which the distribution is shown in the upper plot.
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another verification of the applicability of the theory;
similarly, one can estimate the value of K2 from ultrasound
attenuation measurements that are expected [41] to become
exponentially low only at K > K2. Notice that these differ-
ent regimes happen within the pseudogapped regime where
localization of the single electron function leads to the
formation of preformed Cooper pairs [2]. Such materials are
expected to have normal-state resistivity Rn only several
times below the critical value Rc. Experimentally, for
moderately thin films the value of Rc ∼ 10 kΩ. Assuming
that ρs for the film is suppressed by a factor of 2–5 compared
to the BCS formula ρBCS ¼ πΔ=R□ [27,28,39] we conclude
that for the films with Δ ∼ 1–2 K and R□ ∼ 1–2 kΩ one
should be able to reach L□ ∼ 10 nH as required for the
superinductor. However, to achieve this goal the material
should be tuned into the regime where the resistance is
already large but not too large so that the effective K > K2.
Notice that a very small gap in the microwave experiment
was reported recently in strongly disordered NbN films, see
Fig. 3(d) in Ref. [25]. We also mention a recent comple-
mentary approach clarifying the classical Mattis-Bardeen
theory of microwave conductivity for strongly disordered
superconductors [42,43].
Conclusion.—We demonstrated theoretically the pres-

ence of low-lying collective modes in disordered super-
conductors in the outer proximity of the SIT, and
formulated the conditions for the realization of dissipation-
less superinductors.
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