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Fluids with spatial density variations of single or mixed molecules play a key role in biophysics, soft
matter, and materials science. The fluid structures usually form via spinodal decomposition or nucleation
following an instantaneous destabilization of the initially disordered fluid. However, in practice, an
instantaneous quench is often not viable, and the rate of destabilization may be gradual rather than
instantaneous. In this work we show that the commonly used phenomenological descriptions of fluid
structuring are inadequate under these conditions. We come to that conclusion in the context of surface
catalysis, where we employ kinetic Monte Carlo simulations to describe the unimolecular adsorption of
gaseous molecules onto a metal surface. The adsorbates diffuse at the surface and, as a consequence of
lateral interactions and due to an ongoing increase of the surface coverage, phase separate into coexisting
low- and high-density regions. The typical size of these regions turns out to depend much more strongly on
the rate of adsorption than predicted from recently reported phenomenological models. We discuss how this
finding contributes to the fundamental understanding of the crossover from liquid-liquid to liquid-solid
demixing of solution-cast polymer blends.
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A common theme in the fields of soft matter and surface-
catalyzed chemical reactions is the crucial role of meso-
scopic phase separation: While soft matter deals with topics
such as the demixing of lipids in bilayer membranes [1] and
of polymers or nanoparticles in a melt or solution [2–7],
surface catalysis relies on the structure of coexisting low-
and high-density fluid domains of reactants adsorbed at
a metal surface [8–15]. In this Letter, we theoretically
explore under what conditions phenomenological models
fail to describe phase separation in the context of surface
catalysis, and discuss the implications of this failure on the
morphology formation in solvent-cast thin-film polymer
composites [16–21].
In particular, we are interested in the mechanism that

determines whether evaporation-induced phase separation
of the polymer blend in solution takes place via liquid-liquid
(L-L) or via liquid-solid (L-S) demixing [17–19]. A change
from L-L to L-S demixing results in a tremendous change
of the dry-layer morphology and hence the macroscopic
properties of the polymer composite, and may be achieved
through the addition of a high-boiling-point cosolvent. The
underlyingmechanism remains elusive [18], and attempts to
address it using molecular dynamics simulations are
severely challenged by the required time scales and system
sizes [22–24]. As an alternative approach, we propose to
seek this crossover under conditions where phenomeno-
logical models to describe L-L demixing break down. We
identify such conditions for the casewhere the concentration
increases uniformly, i.e., in the absence of stratified con-
centration profiles [16,20,21,25–27]. For these conditions,
we expose the failure of phenomenological models by

finding a rather strong dependence of the length scale of
the phase-separated domains on the quench rate.
Rather than attempting to include all aspects of the

detailed chemistry in computationally expensive molecular
dynamics simulations, we capture the relevant physics
of uniformly destabilized systems using a simple two-
dimensional lattice model [20,28–31], evaluated using
kinetic Monte Carlo (kMC) simulations [32–35].
Previous works showed that the time dependence of the
composition alters the spinodal wavelength following an
instantaneous temperature quench into the miscibility gap
[33–35]. On the other hand, if the quench is gradual rather
than instantaneous, then local mean-field models predict
the spinodal length scale to decrease with the one-sixth
power of the evaporation rate [20,29,31,36,37]. Although it
is known that nucleation may play a role in experimental
systems [38–40], the validity of the mean-field approxi-
mation was not tested systematically.
A particularly suitable study case for this analysis is the

situation in surface catalysis of unimolecular adsorption of
gaseous molecules onto an initially clean metal surface
[9,41–43]. Because of ongoing adsorption the surface
coverage of adsorbates increases, which leads to a compo-
sition quench that induces phase separation of the laterally
interacting adsorbates. In the following, we set up the
model system and kMC scheme, and investigate the impact
of the adsorption rate upon structure formation. Finally, we
discuss the consequences of the discrepancies between our
findings and those expected from phenomenological mod-
els, and discuss the implications to solvent-borne thin-film
polymer composites.

PHYSICAL REVIEW LETTERS 120, 036001 (2018)

0031-9007=18=120(3)=036001(5) 036001-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.036001&domain=pdf&date_stamp=2018-01-19
https://doi.org/10.1103/PhysRevLett.120.036001
https://doi.org/10.1103/PhysRevLett.120.036001
https://doi.org/10.1103/PhysRevLett.120.036001
https://doi.org/10.1103/PhysRevLett.120.036001


To set up the model, we consider a metal with initially
vacant adsorption sites that are ordered in a periodic N2

square lattice. In our simulations, we typically choose N ¼
256 and average over multiple (typically five or more)
lattices to enhance the statistics. To keep our description as
simple as possible we only allow five types of events to take
place: Gaseous molecules may adsorb at a site (but not
desorb), or an adsorbed molecule may hop to one of the
four nearest-neighbor sites. Within the random selection
method in each kMC step one out of a list of a 5N2 events
is potentially possible [12], and time increases with an
increment

Δt ¼ −
ln u

5N2rmax
; ð1Þ

where u is a uniform deviate on the unit interval and rmax
is the upper value of an event rate.
During a kMC step, an event is randomly selected from

this list and may either be immediately rejected, e.g.,
because it represents adsorption or hopping to a site that
is already occupied, or accepted according to an acceptance
probability

P ¼ r
rmax

; ð2Þ

where r is the rate of the event. We have specified the rates
of nearest-neighbor hopping and adsorption as follows.
For the hopping rate we take [44]

Wdiff
i→j ¼ νhop expð−ΔH=kBTÞ; ð3Þ

where kB is Boltzmann’s constant and νhopðTÞ is the
attempt frequency of a hop. In principle, the latter depends
on the activation barrier that the adsorbate has to overcome
to escape a lattice site and hence depends on the absolute
temperature, T [12]. In order to model fluid structuring, we
include lateral interactions using the Ising Hamiltonian

H ¼ −
1

4
J
X
hiji

θiθj; ð4Þ

where the sum includes all nearest neighbors hiji. Finally,
θi ∈ f0; 1g is the occupancy of site i and J is the coupling
parameter.
If the coupling parameter is negative the adsorbates repel

each other, whereas for positive values they attract each
other. For sufficiently large attraction the particles self-
organize into coexisting low- and high-density regions.
This happens for a coupling parameter larger than the
critical value of 0.44 [45], as indicated by the well-known
Ising phase diagram shown in the inset of Fig. 1. The purity
of the coexisting domains is indicated by the binodal, given
by J ¼ ð1=2Þarsinhð½1 − ð2θ − 1Þ8�−1=4Þ (solid line). We
used this analytical expression to validate our simulated
results (symbols) [46].

The dynamics by which our lattice fluid isothermally
destabilizes is indicated by the arrow in the inset of Fig. 1.
This arrow represents the trajectory through the phase
diagram as followed by our lattice fluid for a coupling
parameter of J ¼ 0.5: Initially, the adlayer resides in the
single-phase region of the phase diagram, and enters the
two-phase coexistence region when the coverage crosses
the value θ ≈ 0.04. To verify that our findings are robust
with respect to the distance from the critical point, we have
varied the value of the coupling parameter from 0.45 to
0.76. The rate by which the adlayers enter the coexistence
region of the phase diagram is described by the final
ingredient of our model, which is the microscopic adsorp-
tion rate.
For reasons of simplicity, we ignore the influence of

lateral interactions on the adsorption rate [47,48] and use
the unimolecular adsorption rate [12]

Wads
i→j ¼ νads: ð5Þ

We discuss the implications of this crude approximation
at the end of this Letter. The rate in Eq. (5) results in the
macroscopic adsorption rate given by

dθ
dt

¼ ð1 − θÞνads; ð6Þ

of which the solution is θðtÞ ¼ 1 − expð−νadstÞ, provided
that the surface is clean at time t ¼ 0. This relation is
represented by the solid line in the main graph of Fig. 1.
The symbols in Fig. 1 correspond to a simulation for a
coupling parameter J ¼ 0.5 and adsorption rate

J

FIG. 1. Surface coverage θ as a function of the dimensionless
time νadst, with νads the rate of adsorption and t the time. The
symbols represent all kMC results obtained in this work and the
solid line is given by Eq. (6). The inset shows how the increase in
coverage implies that the unstable region of the phase diagram is
entered, provided that J is larger than the critical value of 0.44.
See main text.
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νads=νhop ¼ 10−4. For this simulation, we visualize the time
development of the adlayer structure in Fig. 2.
Figure 2 shows an initially clean surface with exclusively

vacant sites (black). As time proceeds, an increased number
of sites gets occupied by adsorbates (yellow) until the
surface is completely covered. Complete coverage is
achieved after a time of the order of the reciprocal
adsorption rate, ν−1ads. During structure evolution we observe
the formation of clusters that coarsen on account of
ripening and coalescence, as well as due to material
addition by adsorption. In order to characterize how the
structure evolves with time, one may obtain a typical length
scale from the first moment or the maximum of the radially
averaged structure factor, or from the first moment, first
minimum or first zero point of the radially averaged
correlation function [44]. Of these measures, the last one
is best defined and is guaranteed to decay from unity to
some negative value. Indeed, it turns out to provide the
most robust value; hence, we define this as the character-
istic length scale R�ðtÞ.
It is now of interest to compare the time evolution of this

length scale to what is expected from the phenomenological
models [20,29,31,37,49]. To serve this purpose we have
plotted the time evolution of R�ðtÞ in Fig. 3 for adsorption

rates, νads, ranging from 10−6νhop to 10−3νhop. The time is
given in units of the reciprocal adsorption rate, ν−1ads, so that
for all curves the binodal coverage is crossed at time
νadst ≈ 0.04. For times νadst < 0.04 we find the first
discrepancies between our microscopic model and the
expectations from the phenomenological models
[20,29,31,37,49]: While the latter do not include any
structuring prior to reaching the spinodal, we clearly find
structuring in the single-phase region prior to entering the
unstable region.
Obviously, the presence of a correlation length in the

single-phase region is expected [28,32,40,50,51]. It does,
however, not directly explain the behavior just after enter-
ing the unstable region of the phase diagram: While the
mean-field models predict a spinodal length that decreases
with time due to ongoing destabilization of the mixture
[20,31,37,49], we here find a structural length scale that
increases with time prior to reaching the usual R� ∝ t1=3

scaling at late times (solid lines) [52].
The consequence of the deviations from mean-field

behavior manifests itself in the feature size of the adlayer
structure, R0. We have defined this length as the parameter
to fitR� ¼ R0ðνadstÞ1=3 to the simulated data in Fig. 3 at late
times. In Fig. 4 we have plotted R0 as a function of the

FIG. 2. Configurations of adsorbates at a 256 × 256 periodic lattice with a coupling parameter J ¼ 0.5 and a dimensionless adsorption
rate of νads ¼ 0.0001νhop for times νadst ¼ 0, 0.061, 0.122, 0.305, 0.610, with νhop the attempt frequency of a hop. The dark areas
represent vacant sites, whereas the light areas are occupied by the adsorbate.

FIG. 3. Structural length scale R� as a function of time t, with
the time in units of the adsorption rate νads. For long times, the
structural length develops as R� ¼ R0ðt=t0Þ1=3, with t0 the time at
which the coverage crosses the binodal value.

FIG. 4. Characteristic length scale R0 of the adlayer structure as
a function of the adsorption rate νads for a varying coupling
parameter J. The length scale and adsorption rate are given in
units of the lattice spacing and hopping attempt frequency νhop,
respectively.
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adsorption rate for various values of the coupling param-
eter. The difference with the recently published results is
striking: Instead of an emerging length scale that decreases
with the weak one-sixth power of the adsorption rate [29],
we find a much stronger dependence with a power of
approximately one-fourth.
This finding implies that local mean-field theories are

inadequate in describing the early-stage phase separation of
gradually destabilized fluids. In order to understand how
thermal fluctuations affect the structure formation, we set
up a simple scaling argument [38,39]. We will first apply
this approach to retrieve the well-known one-sixth power if
phase separation takes place by spinodal decomposition,
and subsequently modify this approach to deal with thermal
fluctuations. For both cases, we start from the realization
that phase separation is entirely governed by diffusion and
that the structure must emerge at a time scale

τ ¼ L2ðτÞ=D; ð7Þ
with L the diffusion length and D the diffusivity, which
both, in principle, depend on time due to an ongoing
increase of the surface coverage. Under the presumption
that the structures form at a sufficiently low surface
coverage, the diffusivity is virtually constant, and is then
given byD ¼ a2νhop with νhop the hopping rate. The task is
to estimate how the diffusion length L depends on time, on
the hopping rate νhop, and on the adsorption rate νads.
In the case of classical spinodal decomposition following

an instantaneous deep quench, the diffusion length is
independent of time. Consequently, short-wavelength
density fluctuations decay due to a free energy penalty
of density gradients, which is controlled by the gradient
stiffness κ. The large-wavelength fluctuations are only
weakly penalized and are amplified with a rate that, due
to the finite rate of mass transport, decreases with an
increasing wavelength. The wavelength that corresponds to
the fastest growth is the spinodal length scale, λ�, and the
diffusion length is given by L ∝ λ2�=

ffiffiffi
κ

p
[28].

In the case that the quench takes place gradually, the
spinodal wavelength is infinitely large at the point in time
that the spinodal concentration is crossed. As time pro-
ceeds, the fluid is ongoingly destabilized and the spinodal
wavelength decreases with the square root of time as
λ�ðtÞ ∝ ðνhopt=κÞ−1=2. Inserting this into the expression
for the diffusion length and evaluating Eq. (7) at the
quench time t ¼ τ, gives τ ∝ ν−1=3hop ν−2=3ads and LðτÞ ∝ffiffiffi
κ

p ðνads=νhopÞ−1=6 [29,31].
As we have found from our simulations, this result is

incorrect due to the influence of thermal fluctuations
[50,51]. Instead of spinodal decomposition through col-
lective diffusion we now deal with nucleation of domains
[38,40], which we presume to be facilitated by the self
diffusion of individual adsorbates to a cluster. In this case,
the diffusion length is given by the mean-free path length

L ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=θðtÞ

q
; ð8Þ

with a again the lattice spacing and θ the surface coverage.
Since the surface coverage increases as θðtÞ ≈ νadst, we
have L ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=νadst

p
. After inserting this into Eq. (7) and

evaluating at the quench time t ¼ τ we obtain the relations
τ ∝ ν−1=2hop ν−1=2ads and LðτÞ ∝ aðνads=νhopÞ−1=4.
This result is consistent with our finding in Fig. 4 and

indicates the importance of thermal fluctuations and
diffusion-limited nucleation in gradually destabilized
fluids. We emphasize that the one-fourth power law is
presumably not universal for all gradually quenched
systems. The first reason for this is that, in practical
systems, nucleation may be activation limited, in which
case the nucleation rate may be strongly time dependent
[38,39]. The second reason is that the structural length scale
is determined at the point in time where the rate of fluid
structuring outgrows the rate at which disorder is imposed.
In our specific example system, diffusion orders the fluid
by cluster formation, and adsorption introduces random-
ness in the system. However, the opposite is also possible:
If lateral interactions cause adsorption to occur predomi-
nantly at the interface of clusters [47,48], then adsorption
leads to ordering through cluster growth while diffusion
could shrink the clusters. The third reason why the one-
fourth power is presumably not universal follows directly
from the ingredients in the same scaling argument: The
mean-free path length in Eq. (8) depends on the dimen-
sionality of the lattice, i.e., L ∝ aθ−1=d.
In summary, we have employed kMC simulations to

investigate how the phase separation of molecules adsorbed
at a metal surface is affected by ongoing unimolecular
adsorption. Our model system complements previous
examples that expose the failure of phenomenological
models in surface catalysis [53]. In our case, this failure
originates entirely from nucleation of high-density domains
in our adlayer as the unstable region of the phase diagram
is gradually entered upon adsorption. Consequently, the
structural length scale is no longer determined by spinodal
decomposition through collective diffusion as described
by phenomenological models, but by events at the scale of
individual molecules.
These findings have important implications on the

interpretation of morphology formation during solvent
casting of polymer composites. Our finding indicates that
the mean-field approximation breaks down under condi-
tions where evaporation-induced stratification is absent
[16,21,25], which arguably takes place under conditions
of slow evaporation if a high-boiling-point cosolvent is
added to the solution [17–19]. This failure of the mean-field
theory potentially explains the experimental observation of
liquid-solid phase-separated morphologies under those
conditions [17–19].
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