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The existence of bright solitons in bulk superfluid 4He is demonstrated by time-resolved shadowgraph
imaging experiments and density functional theory (DFT) calculations. The initial liquid compression that
leads to the creation of nonlinear waves is produced by rapidly expanding plasma from laser ablation. After
the leading dissipative period, these waves transform into bright solitons, which exhibit three characteristic
features: dispersionless propagation, negligible interaction in a two-wave collision, and direct dependence
between soliton amplitude and the propagation velocity. The experimental observations are supported by
DFT calculations, which show rapid evolution of the initially compressed liquid into bright solitons. At
high amplitudes, solitons become unstable and break down into dispersive shock waves.
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Solitons are localized nonlinear waves in a medium,
which do not disperse as a function of time and exhibit no
interaction during a two-wave collision. After their dis-
covery in the early 1800s, solitons have been observed in
many different media, which exhibit pronounced nonlinear
response. In recent years, solitons have become an intense
field of research due to their important applications in areas
such as plasma physics, electronics, biology, and optics [1].
Mathematical description of solitons can be formulated in
terms of model dependent nonlinear partial differential
equations (e.g., the nonlinear Schrödinger equation). In
general, it has been established that nonlinear excitations
(i.e., shock waves and solitons) exhibit distinct dependency
between their amplitude and propagation velocity [1].
Solitons in thin 4He films adsorbed on solid substrates

have been studied extensively by both experiments [2–5]
and theory [6–9]. The film thickness is typically only a few
atomic layers, which supports the propagation of third
sound [10]. When the film is driven by a sufficiently large
amplitude excitation, the response of the system becomes
nonlinear and typically follows the Korteweg–de Vries
(KdV) equation [4,7]. The KdV equation is known to
support solitonic solutions, which have been confirmed
experimentally for helium films in the previously men-
tioned references. Solitons have also been observed exper-
imentally in related systems such as Bose-Einstein
condensates (BECs) and 3He (magnetic solitons) [11–
20]. In the former case, experimental observations have
been successfully modeled by the Gross-Pitaevskii (GP)
equation [21–23]. However, bright solitons have not been
observed in bulk superfluid 4He up to date. Such observa-
tion would not only provide important details of the
underlying nonlinear response of this quantum liquid,

but it would also allow for the study of soliton dynamics
(including dissipation) over much longer propagation
distances and times than currently possible in BECs.
Studies of nonlinear excitations in bulk superfluid helium

are scarce. Most experiments have concentrated on the
propagation of second sound shock waves [24–26] whereas
nonlinear first sound has received very little attention. In the
latter case, the efforts have mainly concentrated on the
construction of cryogenic compression shock tubes [27–29],
which can be used to generate shock waves in the liquid and
study their properties (e.g., velocity, amplitude). Shock
waves, unlike solitons, are known to exhibit strong dis-
sipation and dispersion [30]. Semiempirical analysis of
shock waves can be carried out by the Rankine-Hugoniot
theory or its extension that is applicable in the superfluid
phase [31]. As shown in a recent study, shock waves in
superfluid helium evolve on a nanosecond time scale and
hence time-resolved experiments are required for their
characterization [32].
Because of the lack of sufficiently accurate theoretical

models for bulk superfluid helium, the possible existence of
solitons and their properties in this medium have not been
studied previously. Note that neither GP or KdV equations
are applicable for superfluid helium. Only nonlocal phe-
nomenological models, such as density functional theory
(DFT) [33,34], can describe the atomic-scale static and
dynamic response of superfluid helium accurately. While
previous time-dependent DFT (TDDFT) calculations have
noted the existence of supersonic nonlinear waves [35,36],
their nature and properties were not studied further.
Consequently, no experimental efforts have been put
forward to prove (or disprove) the existence of solitons
in this medium. The obvious differences between helium

PHYSICAL REVIEW LETTERS 120, 035302 (2018)

0031-9007=18=120(3)=035302(5) 035302-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.035302&domain=pdf&date_stamp=2018-01-18
https://doi.org/10.1103/PhysRevLett.120.035302
https://doi.org/10.1103/PhysRevLett.120.035302
https://doi.org/10.1103/PhysRevLett.120.035302
https://doi.org/10.1103/PhysRevLett.120.035302


films and the bulk liquid are the dimensionality (2D vs 3D)
and the presence of the film supporting substrate. The
latter influences the sound velocity as a function of depth,
which makes the application of a KdV-type equation
attractive [37].
In this work, we report on the first experimental

observation of bright solitons in bulk superfluid 4He, which
are created by rapidly expanding plasma and boiling on a
metal target surface. In addition to the experimental
evidence, their existence and dynamic properties are also
studied by TDDFT.
The experiments employed a focused (spot diam. 50 μm)

laser pulse (3rd harmonic 355 nm; 9 ns pulse length;
0.5 GW=cm2; Continuum Minilite-II Nd-YAG laser) to
generate plasma on the surface of a solid copper target
immersed in bulk superfluid helium between 1.7 and 2.1 K
at saturated vapor pressure (Oxford Variox or Janis 8DT
cryostat) [32]. A schematic target configuration is depicted
in Fig. 1. The initial radial plasma expansion [38–40] leads
to nonlinear excitation of the surrounding liquid, which was
visualized by time-resolved shadowgraph photography
using a monochrome charge-coupled device (CCD;
Imaging Source DMK23U445) equipped with 180X zoom
lens (working dist. 95 mm; max. resol. 1.7 μm=pixel and

focal depth �100 μm) and a delayed laser pulse (2nd
harmonic 532 nm; 9 ns pulse length; Continuum Surelite-II
Nd-YAG laser) as the background light. The contrast in the
images is given by the Laplacian of the liquid density,
which identifies the propagating wave edges. Because of
scattering of the backlight, the images also show some
contrast inside the wave.
A closeup of the system at early times is shown in Fig. 2.

The primary wave emission is produced directly by the
expanding plasma (half-spherical geometry) whereas the
secondary planar wave originates from boiling of liquid
helium on the target surface and the subsequent rapid gas
expansion. The latter process is a consequence of the fast
heat transfer on the metal surface (propagation velocity up
to 105 m=s) following the ablation event. In the long-time
regime, both the primary half-spherical (width ∼15 μm)
and secondary planar waves propagate in superfluid helium
without dispersion (rate < 0.025 m=s) until they disappear
from the observation window after 10 mm. This behavior is
consistent with solitons.
The time evolution of normalized shadowgraph intensity

difference in front of the soliton vs immediately behind is
shown in the bottom panel of Fig. 3. Assuming that the
nature of the leftover liquid excitations (i.e., spatial
variations in liquid density) does not evolve in time, this
difference reflects the wave dissipation rate [41]. During
the first ∼3 μs, rapid dissipation of both spherical and
planar solitons takes place along with the associated

FIG. 1. Metal target geometry (scale accuracy �10 μm). The
primary waves (red) originate from the expanding plasma created
by laser ablation (red circle) whereas the planar waves (black) are
created by rapid boiling on the target surface. The optical axis for
imaging is perpendicular to the plane shown. A photograph of the
target is shown on the right.

FIG. 2. Snapshots of the waves emitted from the target at given
times t (T ¼ 1.7 K). To increase the contrast in the images for
display purposes, the lens system was placed slightly out of
focus. The top portion of the target depicted in Fig. 1 is not
shown.

FIG. 3. The top panel shows the time evolution of the average
soliton velocity (accuracy better than �1 m=s at long times) at
1.7 K with the long-time regime magnified in the inset (total
travel distance indicated by an arrow). The three lines (blue, red,
green) highlight the changes in the wave deceleration. The time
axis refers to the delay between the ablation and backlight laser
pulses. The bottom panel shows the normalized shadowgraph
intensity difference in front of the wave vs behind it. The dashed
line provides a guide to the eye for correlating the velocity and
intensity difference data.
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decrease in their propagation velocity (top panel of Fig. 3).
The second regime (t > 3 μs) exhibits a lower wave
dissipation rate and the decrease in wave velocity
begins to level off. As shown in the inset, the long-time
(t > 30 μs) soliton propagation appears nearly dissipation-
less as the velocity remains constant at slightly above the
speed of first sound (instantaneous velocity ∼250 m=s; see
Ref. [32]). This limiting velocity follows the same temper-
ature dependence as the first sound. We attribute the fast
initial dissipation and reduction in the propagation velocity
to a wave crest breaking process where the high density
liquid is left behind as shocks. Note that a small decay in
the velocity is also expected due to the finite viscosity
present in the experiments [6] and the change in volume of
the spherical soliton with increasing radius.
Another inherent property of solitons is that they emerge

from a two-wave collision without any apparent change to
their shape (apart from a possible change in phase).
Collision between two solitons is shown in Fig. 4, where
the primary half-spherical wave collides with the planar
wave originated from the top section of the target. Because
of the geometry of the emitted waves (half sphere vs plane),
the two waves must intersect at the focal plane of the
imagining system. The shadowgraph images clearly show
that the solitons do not interact and continue to propagate
unchanged after the collision. Furthermore, collision of the
solitons with a metal surface (not shown) leads to effective
reflection, but this is accompanied by energy loss as
evidenced by an audible mechanical shock emitted into
the metal. In the long-time regime, the reflected solitons
from the cryostat walls can be observed to reach the target
region again (total travel dist. 10 cm).
In addition to the experimental observations discussed

above, we have also carried out TDDFT calculations in 3D
[42] to identify solitonic solutions in bulk superfluid 4He
and study their dynamic properties. Within this model,
helium is described by a complex valued order parameter

Ψðr; tÞ, which is related to the atomic density as ρðr; tÞ ¼
jΨðr; tÞj2. The TDDFT equation is

{ℏ
∂
∂tΨðr; tÞ ¼

�
−
ℏ2

2m
∇2 þ δEc

δρ

�
Ψðr; tÞ; ð1Þ

where m is the mass of 4He and the functional Ec½ρ� was
taken from Ref. [34]. This functional includes both finite-
range and nonlocal corrections that are required to describe
the T ¼ 0 response of liquid 4He accurately on the
angstrom scale. Note that this model does not include
viscous dissipation and cannot be propagated over long
times (microseconds) due to limitations in current computa-
tional resources. For this reason, TDDFT cannot be used to
study the related dissipative effects observed in the experi-
ments. Furthermore, the accessible length scale is also very
different from the experiments (i.e., nm vs μm). However,
as discussed below, the TDDFT results can be scaled up to
match the experiments.
To mimic the initial condition in the experiments (i.e.,

sudden compression by expanding plasma), the initial order
parameter, Ψðr; 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðr; 0Þp
, is constructed as

ρðr; 0Þ ¼ ρ0½1þ ðΔρ=ρ0Þsin2ðπx=λcÞΘwðxÞ�; ð2Þ
where Θw represents a “box function” centered at x0 with
width w ¼ nλc (with n integer), i.e., ΘwðxÞ ¼ 1 when x0 −
w=2 < x < x0 þ w=2 and Θw ¼ 0 otherwise. Equation (2)
represents a square profile with average value Δρ=2 that is
superimposed on uniform bulk density ρ0 (0.0218 Å−3 at
T ¼ 0) and modulated along the x axis with wavelength
λc ¼ 3.58 Å. This ansatz is based on the following
assumptions: (i) when the liquid is rapidly compressed,
the local density is increased with respect to the bulk and
(ii) liquid 4He flowing at a velocity greater than the Landau
critical velocity (vL) undergoes a transition from a spatially
homogeneous liquid to a layered state characterized
by a periodic density modulation along the direction of
propagation (wavelength λc and amplitude determined by
v − vL) [43,44]. Such layered structures with densities
higher than the bulk have also been observed in DFT
simulations of fast moving particles in liquid 4He [45].
During the early stages of the time evolution of ρðr; tÞ,

dispersive low-amplitude supersonic waves with wave-
length ∼λc were produced (not shown). For the sake of
clarity, we show smoothed density profiles after taking a
local average of the density within a space window of
�2λc. We wish to stress that this procedure is just
postprocessing and therefore it does not affect the time
evolution itself. Note that the applied theoretical model
must be able to describe the underlying atomic scale
internal structure of the soliton.
When the initial state given by Eq. (2) is propagated in

time using Eq. (1), it splits rapidly into two counter-
propagating bright solitons as shown in Fig. 5. In contrast,

FIG. 4. Time evolution of the primary (spherical) and secon-
dary (planar from top) solitons before, during, and after the
collision (T ¼ 1.7 K). The red circle indicates the origin for
the primary wave emission and the top (blue) surface for the
secondary wave. The delay between the ablation and backlight
laser pulses is indicated by t.
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due to the presence of the expanding plasma and the target
in the experiments, only one soliton may form following
the initial compression. The initial position x0 of the square
profile was placed at the simulation box boundary and, due
to the periodic boundary condition, the two solitons
resulting from the initial splitting move away from the
boundaries towards the center. Note that the soliton width
(∼20 nm for the case shown) and height are well preserved
during the time evolution. In comparison, a Gaussian wave
packet with the same width and amplitude would disperse
rapidly at 90 m=s. The solitons were also found to be stable
with respect to random distortions introduced into the order
parameter.
The relationship between the average soliton height ρs,

which is controlled by the value of Δρ=ρ0 in Eq. (2), and its
propagation velocity exhibits nearly linear behavior at low
amplitudes as shown in Fig. 6. In the limit of very small
amplitudes, the velocity approaches the speed of sound.
When the amplitude ρs=ρ0 is increased above 1.3, the
system becomes unstable and evolves rapidly into a series
of shock waves. This instability may be related to the
previously mentioned wave crest breaking phenomenon,
which was observed before 3 μs in Fig. 3. The calculated
maximum stable soliton velocity (∼430 m=s) corresponds
approximately to the point where the rapid velocity decay
levels off (dashed line near 3 μs in Fig. 3). The long-time

wave propagation velocity in the experiments remained
slightly above the speed of sound, which corresponds to
∼3% density increase at the soliton with respect to the bulk
liquid (cf. Figs. 3 and 6). Both the lack of dispersion and the
distinct amplitude-velocity dependence are characteristic to
solitons.
When the initial width of the compression in Eq. (2) is

increased, the width of the emitted solitons increases
accordingly. Therefore, despite the obvious difference in
the length scale between TDDFT and the experiments, this
suggests that the presented nanometer-scale mechanism
can scale up to micrometers. We also note that the presented
solitonic waves from Eq. (2) can only be observed using a
finite-range nonlocal energy density functional whereas
local models, such as GP fitted to reproduce the speed of
sound, do not support such solutions.
A collision between two solitons from TDDFT is shown

in Fig. 5. Based on the simulations, the amplitude, shape,
and velocity of the solitons are well preserved after the
collision. This observation is in agreement with the
experimental images shown in Fig. 4. At the point of
collision shown in panel (e), the solitons interfere con-
structively as they both have a common phase factor (i.e.,
identical origin). If a soliton is made to collide with an
exponentially repulsive wall (not shown), TDDFT calcu-
lations show that it loses its shape partially and dissipates
some of the energy as shock waves. This behavior is also
consistent with the experimental observations.
In summary, we have shown for the first time that bulk

superfluid 4He can support bright solitonic waves. This is
evidenced by both direct experimental observations as well
as theoretical modeling based on TDDFT. The liquid
compression created by the expanding plasma is suffi-
ciently high such that the resulting nonlinear response can
counteract the dispersive effects. This is in contrast to
previously studied thin liquid helium films where the
presence of the supporting substrate played a major role
in producing the necessary nonlinear response. In bulk

FIG. 5. Snapshots of superfluid 4He density along the direction
of soliton propagation (x axis) from TDDFT. The initial com-
pression was created on the simulation box boundary with n ¼
30 (see text). Because of the periodic boundary condition, the
solitons propagate as shown in (a)–(d), collide in (e), and
continue propagating almost unchanged in (f)–(h). When com-
pared with experiments, the x axis is oriented perpendicular to the
ablation target.

FIG. 6. Soliton propagation velocity (vs) vs amplitude (ρs=ρ0)
from TDDFT. The horizontal dotted line indicates the velocity of
first sound in superfluid 4He at T ¼ 0.
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superfluid helium, solitons become unstable when their
amplitude exceeds a critical threshold, which corresponds
to a velocity slightly above 400 m=s.
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