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Critical Bursts in Filtration
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Particle detachment bursts during the flow of suspensions through porous media are a phenomenon
that can severely affect the efficiency of deep bed filters. Despite the relevance in several industrial fields,
little is known about the statistical properties and the temporal organization of these events. We present
experiments of suspensions of deionized water carrying quartz particles pushed with a peristaltic pump
through a filter of glass beads measuring simultaneously the pressure drop, flux, and suspension solid
fraction. We find that the burst size distribution scales consistently with a power law, suggesting that we are
in the presence of a novel experimental realization of a self-organized critical system. Temporal correlations
are present in the time series, like in other phenomena such as earthquakes or neuronal activity bursts, and
also an analog to Omori’s law can be shown. The understanding of burst statistics could provide novel
insights in different fields, e.g., in the filter and petroleum industries.
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The filtration of fluids through deep bed filters is a
problem of great technological interest due to the wide
range of related applications, such as the purification of
liquid aluminum for can construction, the design of self-
regenerating filters, or the prediction of sand production in
oil wells. Experimentally, it has been shown that, depend-
ing on local flow conditions, bursts appear in fluid flow and
pressure drop across the filter [1-3], which represent an
important problem affecting the efficiency and lifetime of
the filter itself. Despite the relevant technological impact
of bursts, no attention has been given so far to a detailed
statistical analysis of their occurrence. Such an analysis is
of great importance, since information about the range of
burst sizes and their temporal organization can help the
optimization of filter performance. We therefore experi-
mentally address this problem in order to measure and
analyze statistical properties of long time series of bursts.

A number of microscopic mechanisms is responsible
for the deposition and resuspension of particles leading to
bursts. Particle deposition reduces filter porosity and
permeability, and it occurs through particle interception
by the filter matrix, inertial impaction of suspended
particles against the matrix, Brownian diffusion, and
gravity [4-6]. Upon contact, small particles (< 10! pm)
stick to the filter matrix surface because of van der Waals
forces [4—6], whereas larger particles are mainly retained
by mechanical clogging due to particle straining and
bridging in pore throats [4,7]. Conversely, fluid-flow-
induced drag forces are responsible for particle detachment,
as soon as they exceed the adhesive forces between the
particle and the filter matrix or deposit [8,9]. In order to
observe particle resuspension [8,10], it is necessary to
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achieve a certain value of fluid velocity, which is then
enhanced if flow surges occur [11,12]. Detachment is also
favored by instabilities caused by suspended particles [13]
that hit and detach previously deposited particles or pore
pressure fluctuations due to the passage of other particles
close by [14]. Resuspended particles can then either be
reentrapped in deeper filter layers or exit the filter with the
effluent [8,15].

Experimental investigations have shown that a dynamic
equilibrium can be reached between deposition and detach-
ment rates [1]. Such an equilibrium corresponds to mor-
phological modifications inside the filter [16] caused by the
plugging and unplugging of pores. This effect becomes
visible as bursts, i.e., fluctuations either in the solid fraction
(ratio between the volume of solid particles and the total
volume) of the effluent [1] or in the differential pressure or
else in the permeability through the filter [2] (which is
observed at the field scale in oil reservoirs [3]). Several
models have therefore been developed to take into account
the deposition and detachment of particles (see, e.g.,
Refs. [17-23]). In this study, we characterize the statistical
properties of burst sizes by experimentally generating long
time series. We also question the existence of temporal
correlations between events which could lead to a sequence
of close-in-time bursts seriously affecting the filter.

We measure the flow of a Newtonian aqueous suspen-
sion of quartz particles (whose size is large enough for
Brownian motion to be negligible) through a densely
packed filter bed of glass beads (see Fig. 1 and
Supplemental Material [24] for details). The closed loop
design of our setup allows us to perform long-term experi-
ments and, thus, to collect the long data series necessary to
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FIG. 1. Experimental setup. The suspension is pumped from a
beaker through two pressure oscillation dampeners and through
the granular filter.

perform a reliable statistical analysis. In a certain range
of experimental parameters, we observe permeability
jumps which are related to particle resuspension bursts
inside the filter.

Filtration regimes.—The clogging behavior of the filter
is strongly influenced by the solid fraction [® = (p —p,,)/
(ps — pyw), Where p is the suspension density, p,, the water
density, and p, the quartz density], whereas the flow rate Q
has a negligible effect (see Fig. 2). Three different regimes
are identified: a nonclogging regime, a clogging regime,
and an intermediate transient regime.
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FIG. 2. Filter phase diagram. At low solid fractions, the flux is
continuous with no indications for clogging (green area). With an
increasing solid fraction, jumps are observed (red area). For even
higher values of ®, the filter reaches complete clogging (yellow
area). Every point in the diagram indicates an experiment, and
error bars represent variations of Q and @ (+1.960, where o is the
data standard deviation). The black point with white error bars
indicates the parameters of the experiments whose statistical
analysis is shown in the following. The insets show the typical
pressure loss vs time evolution for experiments of the non-
clogging (upper inset) and clogging regime (lower inset).

Atlow solid fractions (< 1072), pressure loss through the
filter (P = P, — P,, where Py and P, are the pressures at
the filter inlet and outlet, respectively) rises very slowly,
approaching asymptotically a constant (upper inset in
Fig. 2). No significant fluctuations are observed, indicating
that deposition does not play an important role and that
particle detachment bursts are absent.

Experiments performed with a suspension solid fraction
larger than 1072 show a series of pressure loss jumps and,
thus, in permeability. If @ is smaller than 4 x 1072,
complete clogging does not occur. The overall rise of
pressure loss is very slow (3 x 10* Pa in more than 4 days
for the experiments shown in Fig. 3). This implies that
experiments are close to a steady state, in which the mean
value of P is stationary and fluctuates only due to pressure
loss jumps. This is an indication of a dynamical competi-
tion between deposition and resuspension inside the filter.

If @ is increased above =5-6 x 1072, pressure loss
jumps are still observed during the experiments (lower inset
in Fig. 2). In this case, the filter permeability reduction is
so strong that complete clogging is reached and fluid
flow through the filter stops completely.

Resuspension bursts.—Here we analyze three experi-
ments run under the same experimental conditions (Fig. 2)
in the transient regime for about 4.5 days. The temporal
evolution of the pressure loss, the flow rate, and the
suspension solid fraction are measured as a function of
time (Figs. 3 and 4).

Figure 3 shows that P increases in time with a sequence
of successive jumps which can be attributed to particle
deposition inside the filter. The time evolution of the flow
rate also exhibits jumps, which occur at the same time as
the pressure loss jumps (Fig. 4). Indeed, the flow rate
increases at the beginning of a jump, reaches a maximum,
and then decreases to its initial value (inset in Fig. 4). At the
same time, the suspension solid fraction follows the same
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FIG. 3. Time evolution of pressure loss P through the filter

during three experiments. Successive enlargements into a tem-
poral interval are shown in the balloons.
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FIG. 4. Time evolution of the flow rate Q and the suspension
solid fraction @ during the three experiments. The inset shows the
temporal evolution of Q and @ (top) and P (bottom) during a
single jump of experiment 3 indicated by the arrows (units are the
same as in the main figure, and P is in kPa).

behavior as the flow rate, with a faster decay to the
initial value.

The fact that Q increases together with pressure loss
jumps implies that the sample permeability increases as
well, which can be explained by the opening of new
channels due to resuspension of previously deposited
particles. The frequent occurrence of these jumps indicates
that experiments are characterized by a continuous inter-
play between deposition phases and detachment bursts.
When P increases, deposition dominates and pores in the
filter become increasingly clogged. Consequently, local
flow rates in the individual pores increase. As soon as a
sufficient flow rate is reached, particle detachment occurs,
resulting in the opening of a pore. Permeability then
increases, while P and the local fluid velocity decrease,
thereby restarting the cycle.

We compute the jump abruptness as the ratio between
pressure loss jump size AP and its duration 7 (see
Supplemental Material [24] for details on jump recogni-
tion). A log-log scatter plot of the jump abruptness AP/z
vs AP for all data shows a linear trend (Fig. S2 in
Supplemental Material [24]). Despite the scatter in the
data, results are consistent for all three experiments and
indicate that large jumps experience a faster decrease in
pressure loss than smaller ones. A linear fit to the data
suggests that jump abruptness scales as the jump size to the
power of 0.73 £ 0.03. A discussion about the mechanism
behind this phenomenon can be found in Supplemental
Material [24].

Size and duration distributions of jumps.—Jump sizes
vary significantly during a single experiment (see Fig. 5
and Supplemental Material [24] for details), and their
distributions are consistent with power laws with exponents
a=19=+0.1 for P, 2.4 £ 0.2 for Q, and 3.8 £+ 0.3 for ®.
The exponents are computed by applying the maximum
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FIG. 5. Size distribution of pressure loss (blue), flow rate (red),
and solid fraction (black) jumps. Circles are data from experiment
1, triangles from experiment 2, and squares from experiment 3.
The jump size S is normalized by the size of the largest jump. The
error of the exponents « is evaluated as the maximum difference
between the fitted value for data from all experiments and from
single experiments.

likelihood method [25] to data from three experiments. The
power-law behavior of pressure loss jump size distribution
is confirmed by the numerical simulations of Ref. [26].
Moreover, we measure the pressure loss jump size dis-
tribution by applying a smaller identification threshold
(5 instead of 50 Pa; see Supplemental Material [24] for
details). The power-law behavior is always retrieved with
very stable exponents, implying that the absence of a
characteristic size does not depend on the identification
threshold. A deviation from the power-law distribution, due
to the loss of events caused by the limited resolution of
acquisition devices, is found only for small jump sizes.
Because of experimental restrictions (such as the necessity
of being in the transient regime) that do not allow a strong
variation of flowing parameters, the extension of size
distributions of Q and @ is limited. Interestingly, the values
of a for all three distributions are larger than the values
measured for earthquakes, solar flares, and bursts in
neuronal activity, which are typically in the range of
1.5-1.6 [27-29], implying that filtration belongs to a
different self-organized criticality universality class.
Temporal correlations.—The consistency of size distri-
butions with power laws suggests that, in the transient
regime, filtration exhibits a scale-free behavior and that
the phenomenon is critical. Beside the absence of a
characteristic size, a fundamental feature of criticality is
the existence of long-range temporal correlations between
bursts. In order to verify their existence, we calculate the
pressure loss jump rate u (over nonoverlapping windows of
5000 s) as a function of the time for each experiment
(Fig. 6). We observe that y is not a constant, as one would
expect for a perfect Poisson process. The jump rate highly
fluctuates, exceeding frequently the 95% confidence
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FIG. 6. Pressure loss jump rates for the three experiments.
Dashed lines are the average Poissonian rates, and dash-dotted
lines are the 95% confidence intervals.

intervals with respect to the average Poissonian rate for
each experiment. The existence of such jumps in the rate
suggests the presence of correlations in the time series.
In order to confirm the presence of correlations, we
evaluate the quiet time distributions. The quiet time is the
time lag between the end of a pressure loss jump and
the beginning of the next one, considering only jumps
larger than 150 Pa. These distributions, shown in Fig. 7(b),
exhibit a more complex behavior than the exponential
distribution expected for a Poisson process. Indeed, the
distributions can be fitted by a Gamma function, p(Af) =
1/[BT(q)|x?'e/B  with ¢=0.84+0.04 and B=
1006 4= 370 s (the error of the fitted parameters ¢ and B
represents the maximum difference between the fitted
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FIG. 7. (a) Jump series for experiment 1 during a phase in

which p is higher than average. Main jumps are events above the
red line. The green line indicates the minimum jump size.
(b) Quiet time distributions are fitted by a Gamma distribution.
(c) The occurrence rate of after jumps can be fitted with the
modified Omori’s law.

parameters of data from all experiments and the fitted
parameters of data from a single experiment). They are
therefore well approximated by a power law with exponent
f=1—-¢q=0.16 in an initial regime until Az <103 s,
whereas for longer quiet times an exponential decay sets
in. To confirm that a Gamma function represents the best
fit to the data, we evaluate the Akaike information criterion
for a Gamma and an exponential function. We find that
the Gamma function has a lower A/C compared to the
simple exponential, leading to a relative likelihood K =
eACamm=AlCexp)/2 — 1 67 x 10~° in favor of the Gamma
function. If a lower identification threshold is implemented,
the quiet time distribution exhibits an exponential behavior
(see Supplemental Material [24]), indicating that correla-
tions exist mainly between large events, whereas small
fluctuations in the pressure loss are dominated by uncorre-
lated random noise. This is a further indication that the
filtration process in this regime is critical. The evidence for
a Gamma function quiet time distribution is an intriguing
result, since this functional behavior, with similar values of
f, is common to several natural stochastic processes, such
as earthquakes [27,30,31], solar flares [32,33], and acoustic
emissions in rock fracture [34], where close-in-time events
are temporally correlated.

Inspired by the statistical properties of seismic sequen-
ces, we investigate in deeper detail the temporal organiza-
tion of events during an interval characterized by a large
rate increase. We focus on the temporal sequence of events
from experiment 1 between 1.1 x 10° and 1.5 x 10° s
[Fig. 7(a)]. We define the main jump as a jump with size
S > 28, where S is the average jump size in the analyzed
time period. Its after jumps are the following jumps
occurring before the next main jump. This procedure to
identify main and after events is analogous to the standard
statistical analysis performed for earthquakes [27,35].
Figure 7(c) shows the number of after jumps in time,
n(t — ty), occurring after a main jump occurred at ¢ = .
We observe that n(f—1t,) behaves accordingly to the
modified Omori’s law of earthquakes [36,37] n(z — 1)) =
A(c + t — ty)~? with an exponent p = 1.8 and a ¢ value of
2.2x10° s (the parameters are estimated according to
Ref. [38]). This indicates that n(z —#,) has a power-law
decay with exponent 1.8 (for earthquakes, p =1 [39]). If
the data are fitted with a pure power law, the exponent is 1.4
with a smaller error bar. This result suggests that, as large
earthquakes trigger a sequence of aftershocks whose rate
decreases in time as a power law, large jumps trigger
sequences of smaller close-in-time jumps.

Conclusions.—Our experiments show that jumps in deep
bed filtration are the expression of a self-organized critical
process, occurring in a regime of parameters where the
balance between the deposition and detachment of particles
is realized. The values of the critical exponents for the jump
size distributions are different than those typically mea-
sured for other stochastic natural processes, suggesting

034503-4



PHYSICAL REVIEW LETTERS 120, 034503 (2018)

that this phenomenon is in a novel universality class of
self-organized critical phenomena. Indeed, the absence of a
characteristic event size and power-law distributions, even
if with different exponents, is found in a variety of natural
phenomena, such as earthquakes [27,40], solar flares
[28,41], stock markets [42,43], and neural avalanches
[29,44]. Therefore, the evidence for a novel universality
class suggests that the microscopic mechanisms controlling
the self-organization in filtration are different from all the
aforementioned processes. Indeed, filtration can attain a
self-organized critical state by a dynamical adjustment of
the porous medium, in which the decrease or increase of the
local fluid velocity reflect the resuspension or deposition of
particles, respectively. This microscopic interpretation has
been recently confirmed by numerical simulations that are
able to reproduce the scaling behavior of the size distri-
butions [26]. Moreover, the existence of temporal correla-
tions between close-in-time events is evidenced by the
power-law decay of the occurrence rate, similarly to
Omori’s law for earthquakes. These correlations between
bursts confirm the relevance of hydrodynamic interactions
in the process. Our results can be of interest for a number of
problems where resuspension events are observed, such as,
for instance, sand production in oil wells or filtration of
pollutants in soil where resuspension bursts could release
contaminants in the effluent.
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