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The stress generation on pore walls due to the growth of a sodium chloride crystal in a confined aqueous
solution is studied from evaporation experiments in microfluidic channels in conjunction with numerical
computations of crystal growth. The study indicates that the stress buildup on the pore walls is a highly
transient process taking place over a very short period of time (in less than 1 s in our experiments). The
analysis makes clear that what matters for the stress generation is not the maximum supersaturation at the
onset of the crystal growth but the supersaturation at the interface between the solution and the crystal when
the latter is about to be confined between the pore walls. The stress generation is summarized in a simple
stress diagram involving the pore aspect ratio and the Damkhöler number characterizing the competition
between the precipitation reaction kinetics and the ion transport towards the growing crystal. This opens up
the route for a better understanding of the damage of porous materials induced by salt crystallization, an
important issue in Earth sciences, reservoir engineering, and civil engineering.
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Salt crystallization in pores causes damage in porous
materials, a major issue in relation with building durability
and cultural heritage conservation [1–4], underground
structures [5], road [6] and geotechnical engineering [7].
A better understanding of the associated stress is also
important in relation with geomorphology [8], concrete
science [9], or the surface heave phenomenon of granular
materials [10]. The fact that a growing crystal can generate
stress has been known for more than a century [11,12]. The
key concept for the analysis of the stress generation is
the crystallization pressure Pc [13–15]. Corrections to the
original expression [14], taking into account the water
activities and the crystal size, have been developed, e.g.
[16,17], so that the current expression for sufficiently large
crystals of sodium chloride (>1 μm) reads

Pc ¼
2RT
Vm

�
ln Sþ ln

γ�
γ�;0

�
; ð1Þ

where R is the ideal gas constant, T is the temperature, Vm
is the molar volume of the solid phase forming the crystal
(Vm ¼ 27.02 cm3=mol for NaCl), and γ� is the ion mean
activity coefficient. The index 0 refers to the reference state
where the crystal is in equilibrium with the solution. The
ratio S ¼ m=m0 is the supersaturation, where m denotes
the molality of the solution (S ¼ 1 when the crystal and the
solution are in equilibrium).
However, the mechanisms of stress generation are not yet

well understood; see, e.g., [18]. For instance, no damage is
observed in the experiments with glass capillary tubes
presented in [19–20] whereas a supersaturation as high as

1.6 is obtained. Application of Eq. (1) for such a super-
saturation leads to Pc ¼ 160 MPa, well above the glass
wall tensile strength (∼40 MPa). Therefore, it is clear that
the mere knowledge of Eq. (1) and the maximum super-
saturation reached in the pores are not sufficient to predict
damage. Here we analyze the stress generation mechanism
from evaporation experiments performed in glass-
polydimethylsiloxane (PDMS) microchannels (Fig. 1).

FIG. 1. Schematic of the PDMS and glass microfluidic chip.
Crystallization and wall deformations are observed in the pore
channels.
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The main objective is to construct a stress generation
diagram for this simple geometry. Although considered less
harmful than sodium sulfate, see, e.g., [3,4], the case of
sodium chloride is studied. This salt is very common—
simpler than sodiumsulfate since its crystallization leads to a
unique nonhydrated form (referred to as halite) under
standard conditions and can also lead to major damage [21].
As sketched in Fig. 1, the experimental setup is com-

posed of a large channel which is used for supplying the
fluids: salt solution or gaseous nitrogen. Smaller channels
of 5 × 5 μm2 square cross sections, referred to as pore
channels, are positioned perpendicularly to the supply
channel. Three pore channel lengths are tested: 100 μm,
200 μm, and 300 μm. Two sodium chloride solution initial
molalities are used: 1.89 and 4.25 mol=kg (the solubility is
6.15 mol=kg). This allows one to modify the total amount
of available salt in excess at the onset of crystallization. Salt
with a purity ensured to be higher than 99.5% is dissolved
in deionized water. Details on the microfluidic chip
fabrication procedure are given in [22]. The crystallization
is triggered by evaporation of the sodium chloride solution
confined in the pore channels. The salt solution is provided
from the top hole through the supply channel and invades
the pore channels. Once the device is filled, a dry N2 flux is
imposed from the bottom hole to empty the supply channel
and isolates the salt solution in the pore channels. This flux
is maintained during the entire experiment to evaporate the
solution. As a result of evaporation, the meniscus recedes
into the pore channel, and the ion concentration increases
until the concentration ccr marking the onset of crystal-
lization is reached. This leads to the formation of a single
crystal, most often within the liquid bulk away from the
receding meniscus. Then there is rapid growth of the crystal
within the channel. The supersaturation when crystal
growth starts can be determined from a simple mass
balance [22]. The supersaturation averaged over 99 experi-
ments is 1.72, which is consistent with the values reported
in previous works [19,20].
The experiments are performed at ambient temperature

(22 to 24 °C) on an inverted microscopy Zeiss Axio
observer D1 working in transmission. Two video cameras
are used: an Andor Zyla SCMos with a large field and a low
frame rate (1 fps) to record the evaporation kinetics and the
wall deformation at the end of the growth, and a high speed
Photron Fastcam SA3 camera to record the rapid initial
period of the crystal growth (1000 fps).
Movies are exploited thanks to the IMAGEJ© and

MATLAB© software packages to analyze the crystal growth
by tracking the different interfaces (liquid-gas, crystal-
liquid, and crystal-pore wall).
Using a microfluidic PDMS device to analyze deforma-

tion due to sodium chloride crystallization is not a novelty
[23]. However, contrary to [23], the size of our channels
enables us to reproduce the situation of in-pore drying
and to isolate sufficiently small volumes so that only one

nucleation event occurs [24]. As shown in [22] and further
illustrated here, our device is adapted for tracking precisely
the crystal growth and for analyzing the evolution of the ion
concentration around the crystal during its growth.
As can be seen from Fig. 2, a noticeable channel

deformation is obtained and the growth is rapid (the
channel walls are deformed in less than 1 s). The maximum
pore channel deformations (defined as the difference
between the crystal half width r and the initial channel
half width W) range between 0 and 4 μm depending on
the initial dissolved salt mass (equal to the pore channel
volume times the initial concentration). As depicted in
Fig. 2(b), the higher the initial salt mass, the higher the
deformation is.
As reported in the Supplemental Material [25], which

includes Ref. [26], numerical simulations assuming purely
elastic deformations and a uniform normal stress applied
to the channel wall shows that a pressure of about 0.5 MPa
is sufficient to obtain a deformation about equal to the
maximum deformation observed in the experiment.
According to Eq. (1), this corresponds to a supersatu-

ration of only 1.005, much lower than the supersaturation at
the crystallization onset (S ∼ 1.7). At first glance, this is
surprising. Since the growth is fast (∼1 s), the change in the

FIG. 2. Lateral crystal growth. (a) Kinetics of crystal growth; r
is the crystal lateral half size, W is the initial channel half width;
red scale bar represents 10 μm. (b) Absolute deformation against
the initial dissolved salt mass.
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average concentration in the solution during the growth is
expected to be small (the molecular diffusion of ions in the
solution is Ds ∼ 10−9 m2=s; with a liquid plug length H of
the order of 100 μm, a characteristic time of diffusion is
t ¼ H2=Ds ¼ 10 s). However, what matters for the com-
putation of the crystallization pressure from Eq. (1) is not
the average supersaturation in the plug but the supersatu-
ration at the interface between the crystal and the solution.
The deformation computation results suggest that the
supersaturation is in fact quite weak (i.e. slightly greater
than 1) in the vicinity of the crystal when the latter is about
to touch the wall on both opposite sides of the channel. To
confirm this crucial point, the evolution of the ion con-
centration within the solution during the crystal growth
must be analyzed. This is performed from numerical
simulations using a model based on the diffusion reaction
theory (DRT) [27]. First, crystal growth starts only once a
stable nucleus appears in the metastable solution. Then the
DRT distinguishes two steps: the transport of the ions from
the solution to the crystal surface, followed by a reaction
process during which ions fit in the crystal lattice. The latter
is expressed as

wcr ¼
kR
ρcr

ðci − ceqÞ ð2Þ

where wcr is the velocity of the crystal-solution interface;
kR (m=s) is the reaction (precipitation) coefficient, ci
(kg=m3) is the salt mass concentration at the crystal surface,
ceq is the mass concentration at equilibrium, and ρcr is the
crystal density (kg=m3).
Actually, ci is an unknown decreasing during the growth

from the value ccr at the crystallization onset. The variation
of ci results from the competition between the ion transport
phenomena within the solution and the precipitation
reaction. To obtain ci during the crystal growth and, in
particular, when the crystal is about to reach the pore
wall, the equations governing the ion transport within the
solution during the crystal growth are solved

∂ρl
∂t þ ∇:ρlvl ¼ 0; ð3Þ

ρl

�∂vl
∂t þ vl∇ · vl

�
¼ −∇Pl þ μl∇2vl; ð4Þ

∂ρlωs

∂t þ ∇ · ðρlωsvlÞ ¼ ∇ · ðρlDs∇ωsÞ; ð5Þ

where ωs is the mass fraction of the ions in the solution,
ρl is the solution density, vl is the solution velocity, Pl is
the pressure in the solution, μl is the solution dynamic
viscosity, and t is the time. As can be seen from Eq. (5),
the ion transport is governed by diffusion and convection
since a velocity field is induced in the solution as a result

of the crystal growth. Equations (3)–(5) together with
the appropriate boundary conditions (given in [22])
are solved numerically using the commercial software
COMSOL MULTIPHYSICS® for the simplified axisym-
metric situation sketched in Fig. 3(a). The supersaturation
is everywhere 1.7 in the solution when the crystal growth
computation starts (t ¼ 0) and the computations are
performed for different values of W, H=W, and kR around
the experimental ones, respectively, from 0.5 to 2.5 μm,
7 to 60, and 10−5 to 10−3 m=s. The growth being fast, the
mass loss due to evaporation during the growth phase is
neglected.
The initial shape of the crystal is modeled as a sphere for

facilitating the numerical computations. Numerical tests
have shown that the initial shape has little impact on the
results.
Figure 3(b) explains why the stress generated on the wall

is much smaller than the naive prediction based on the
estimate using the supersaturation at the onset of crystal-
lization. During the crystal growth, there is a rapid decrease
(in a few tens of ms) in the supersaturation at the crystal
surface. This result is highly dependent on the values of the
reaction coefficient kR. As discussed in [22], the growth
rates determined from previous experiments in the literature
are not representative of the sole reaction kinetics but are

FIG. 3. Numerical simulations of crystal growth. (a) Sketch of
simulated problem. (b) Supersaturation at the point of crystal
surface located the closest to the wall during crystal growth for
different kR (W ¼ 1 μm and H ¼ 60 μm).
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mostly controlled by the transport of the ions towards the
growing crystal. As a result, the crystal growth rates
reported in the literature are smaller than the intrinsic
growth rate kR due to the precipitation reaction only. If kR is
wrongly confused with the growth rate determined in the
literature, i.e. kR ∼ 10−5–10−4 m=s, the stress at the wall is
much higher than the stress level necessary to cause the
observed deformation. This is because the growth is very
fast in the period controlled by the reaction. The analysis
of our data suggests that kR is at least on the order of
2.3 × 10−3 m=s [22].
As shown in Fig. 3(b), using a value of kR on the order

of 10−3 m=s leads to a weak supersaturation (i.e. S ∼ 1),
compatible with the low stress required to obtain the
observed deformation of PDMS in our experiment; see
[25], Sec. B. The next step is to understand how the stress
generation is related to the parameters of the problem, i.e.
can we develop a stress generation diagram for our simple
system?
To this end, the numerical model is used to determine the

value of supersaturation when the crystal reaches the wall.
The simulation is stopped when the crystal is 5 nm away
from the pore wall, to be consistent with the presence of a
few nanometers trapped liquid films [17,28] (this film is
necessary to supply ions to the growing crystal surface and
can also transmit the stress between the crystal and the wall
when it is sufficiently thin [28]). The corresponding
supersaturation is referred to as the contact supersaturation.
The contact crystallization pressure can then be evaluated
from the contact supersaturation using Eq. (1).
As illustrated in Fig. 4, the resulting stress diagram

depends on two parameters: the aspect ratio H=W and the
Damkhöler number

Da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcrkR
ΔcDs

W

s
;

whereΔc ¼ ccr − ceq. First, no stress is generated when the
crystal cannot reach the pore wall because there is not
enough dissolved salt in excess in the plug at the crystal-
lization onset, i.e. whenH=W ≤ 3Δc=2ρcr ∼ 7 [25]. On the
contrary, the contact crystallization pressure saturates for
sufficiently high values of H=W because the liquid plug is
sufficiently long to behave as an infinite domain. Thus, the
salt in excess far from the crystal is not consumed in the
growth. Between these two limits, the contact supersatu-
ration increases with increasing aspect ratio H=W.
The Damkhöler number Da characterizes the competi-

tion between the precipitation reaction and the ion transport
[27]: Da ¼ kR=kD where kD ¼ ffiffiffiffiffiffiffiffiffiffi

Ds=t
p

characterizes the
average ion mass transfer by diffusion toward the growing
crystal after a time t. Taking as characteristic time the
reaction time tR ¼ W=wcr ∼Wρcr=kRΔc (time for the
crystal to reach the wall when the reaction is limiting)
leads to

Da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcrkR
ΔcDs

W

s
:

Simulation shows that this expression of Da is relevant to
characterize the crystal growth phenomenon. Simulations
made for the same Da but different kR and channel widthW
lead to the same value of S with a relative difference lower
than 0.1%. Figure 4 makes clear that Da must be suffi-
ciently small for a significant stress to be generated on pore
walls. In practice, this means that the pores must be
sufficiently small and explains why no mechanical damage
was observed in the experiments reported in [19,20].
A simple constraint on Da for stress generation can be
expressed as follows. Supersaturation at the crystal surface
can remain high during the growth only if the diffusion rate
is faster than the precipitation kinetics. The amount of salt
needed to form a crystal of radius W can be estimated as
LDW2Δc ∼W3ρcr, where LD is the maximum distance
over which ions are transported to form the crystal. The
typical time to diffuse over a length LD is tD ∼ LD

2=Ds,
whereas the crystal reaches the pore wall after the reaction
time tR when the reaction is the limiting process. Thus, a
sufficient condition to observe a high contact supersatura-
tion is tD ≪ tR or in dimensionless form Da2 ≪ 1, i.e.,

Da ¼
ffiffiffiffiffiffiffiffiffi
Ds

tRkR

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcrkR
ΔcDs

W

s
≪ 1. ð6Þ

Varying both parameters Da and H=W, the contact super-
saturation varies between 1 and 1.33 for Da > 0.65 and
H=W > 7. As depicted in Fig. 4, this corresponds to a
crystallization pressurevarying between 0 and 98MPa using
Eq. (1) (to be compared to the tensile strength of sedimentary
rocks, which is on the order of 1–10 MPa [29]).
In summary, the analysis presented in this Letter makes

clear that what matters for the stress generation is not the

FIG. 4. “Stress” generation diagram: computed values of
contact crystallization pressure Pc as a function of Damkhöler
number Da, and channel aspect ratio H=W. Colored lines are
isolines of Pc with values indicated in MPa. The inset shows a 3D
representation.
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maximum saturation at the onset of the crystal growth but
the supersaturation at the interface between the solution and
the crystal when the latter is about to be confined between
the pore walls. The generation of stresses on the pore walls
as the result of the growth of a sodium chloride single
crystal is actually a highly transient nonequilibrium process
occurring over a very short period (in less than 1 s in our
experiments). This is because the precipitation reaction is
quite fast. As a result, the supersaturation at the crystal
interface rapidly decreases during its growth. Note also that
this process eventually leads to a permanent deformation
(see the Supplemental Material [25] Sec. E for more
details). This better understanding of the stress generation
mechanisms enables us to propose a simple stress diagram
for a single pore involving the pore aspect ratio H=W and
the Damkhöler number. This opens up the route for
diagrams for more complex geometry such as the pore
space of a porous medium. However, as discussed in
the Supplemental Material [25] Sec. F, which includes
Refs. [21,30–31], this could still require a lot of work since
predicting the local transient growth of crystals in the
complex geometry of an interconnected system of pores is
still a widely open problem. It must also be noted that the
fact that the crystal growth is quite fast makes it challenging
to model the stress generation process within the frame-
work of the classical continuum approach to porous media
because this type of approach is typically not well adapted
for accounting for rapid events at pore scale.
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