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Geophysical models approximate classical fluid motion in rotating frames. Even accurate approx-
imations can have profound consequences, such as the loss of inertial frames. If geophysical fluid dynamics
are not strictly equivalent to Newtonian hydrodynamics observed in a rotating frame, what kind of
dynamics are they? We aim to clarify fundamental similarities and differences between relativistic,
Newtonian, and geophysical hydrodynamics, using variational and covariant formulations as tools to shed
the necessary light. A space-time variational principle for the motion of a perfect fluid is introduced. The
geophysical action is interpreted as a synchronous limit of the relativistic action. The relativistic Levi-Civita
connection also has a finite synchronous limit, which provides a connection with which to endow
geophysical space-time, generalizing Cartan (1923). A covariant mass-momentum budget is obtained using
covariance of the action and metric-preserving properties of the connection. Ultimately, geophysical
models are found to differ from the standard compressible Euler model only by a specific choice of a
metric-Coriolis-geopotential tensor akin to the relativistic space-time metric. Once this choice is made, the
same covariant mass-momentum budget applies to Newtonian and all geophysical hydrodynamics,
including those models lacking an inertial frame. Hence, it is argued that this mass-momentum budget
provides an appropriate, common fundamental principle of dynamics. The postulate that Euclidean, inertial
frames exist can then be regarded as part of the Newtonian theory of gravitation, which some models of
geophysical hydrodynamics slightly violate.
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Geophysical fluid dynamics study hydrodynamics in
rotating frames. Insight is gained from geophysical models
that approximate classical fluid motion in rotating frames.
However, even accurate approximations can have pro-
found, unexpected consequences. Consider, for instance,
inviscid fluid motion under the equatorial β-plane approxi-
mation
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where D=Dt is the material derivative, x, y, and z are
Cartesian coordinates, u, v, and w are their material deri-
vatives (velocity components), g is gravity, β ¼ 2Ω=a, with
a and Ω being the planetary radius and rotation rate, and
pðρ; sÞ, ρ, and s are the fluid pressure, density, and entropy
per unit mass. In this system, because the Coriolis parameter
βy varies linearly with y (the equator is at y ¼ 0 and latitude
≃y=a), no change of reference frame can cancel the Coriolis
force. Therefore, inertial frames do not exist. If geophysical

fluid dynamics are not strictly equivalent to Newtonian
hydrodynamics observed in a rotating frame [1], what kind
of dynamics are they?
In order to discuss similarities and differences between

physical models, it is useful to characterize their formal
structure. To this end, variational principles and covariant
formulations are powerful tools. Least action principles
have been presented for relativistic [2] and Newtonian [3]
flows. In addition to their variational structure, Newtonian
hydrodynamics possess a space-time covariant formulation
closely parallel to that of relativistic hydrodynamics, based
on the Milne-Cartan structure of space-time [4–6].
Geophysical models have been formulated from a least
action principle [7–9] and, recently, as a space-time
covariant mass-momentum budget involving a connection
generalizing the Milne-Cartan structure [1]. However, this
mass-momentum budget and space-time connection could
not be related to a space-time invariant action, as in
relativistic hydrodynamics [6].
This Letter aims to clarify fundamental similarities and

differences between relativistic, Newtonian, and geophysi-
cal hydrodynamics, especially how their action, space-time
structure, and mass-momentum budget relate. For this, a
variational principle starting from a space-time devoid of
any geometrical structure is devised. The geophysical
action is interpreted as a synchronous limit of the relativ-
istic action. Applying the same limit to the Levi-Civita
connection of relativistic space-time, a connection is
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obtained that endows the space-time of geophysical mod-
els. Furthermore, covariance of the geophysical action
leads to a covariant mass-momentum budget. These results
suggests a slight redefinition of the classical distinction
between dynamics and gravitation, such that Newtonian
and geophysical fluid dynamics share identical dynamics
but differ slightly in their specification of gravitation.

Variational principle for all hydrodynamics.—Space-
time coordinates are noted as xμ, μ ¼ 0;…; 3. Fluid flow
(relativistic or not) can be described by M ≥ 0 scalars qX,
X ¼ 1;…;M and N > 0 currents Uμ

Y , Y ¼ 1;…; N, where
to each kind of particle or chemical species there corre-
sponds either one scalar or one current. In addition, one
scalar or current is associated with entropy. Depending on
the situation, it may be preferable to treat all species
equally, as currents, or to single out one of them to define
a single current, all other species and entropy being
described as scalars. In the presence of a single fluid, all
currents are colinear. Furthermore, assuming that no
process transforms one species into another, all currents
are assumed nondivergent, and all scalars to be transported
by the currents:

∂μU
μ
Y ¼ 0; ∂μðqXUμ

YÞ ¼ 0: ð1Þ

The dynamics will derive from the action S½qX;Uμ
Y � ¼R

lðqX;Uμ
YÞd4x, where the Lagrangian density lðqX;Uμ

YÞ is
a function of the scalars qX and currents Uμ

Y to be specified
later. The action varies according to

δS½UY; qX� ¼
Z �

πYμ δU
μ
Y þ ∂l

∂qX δqX
�
d4x; ð2Þ

where πYμ ≡ ∂l=∂Uμ
Y are momenta. In the sequel, δqX and

δUμ
Y have compact support, so that any boundary terms that

would appear after integration by parts vanish.
When a Lagrangian description of the flow is adopted

[2], the action varies due to variations of the fluid parcel
world lines. These variations translate into Eulerian varia-
tions of fields qX, UY in Lie form [6]:

δqX ¼ ξμ∂μqX;

δUα
Y ¼ ξβ∂βUα

Y −Uβ
Y∂βξ

α þ Uα
Y∂βξ

β; ð3Þ
where ξμ is an arbitrary vector field related to the displace-
ment of fluid parcel world lines. Standard properties of the
Lie derivative imply that such variations preserve Eq. (1).
Injecting Eq. (3) into δS ¼ 0 and integrating by parts yields
the Carter-Lichnerowicz equations of motion

Uβ
Yð∂βπ

Y
α − ∂απ

Y
β Þ −

∂l
∂qX ∂αqX ¼ 0: ð4Þ

Relativistic and geophysical actions.—At this point, we
can specify the Lagrangian density lðqX;UμÞ such that

relativistic or geophysical hydrodynamics are recovered
from Eq. (4). In a relativistic context, the fluid velocity
uμ is normalized so that gμνuμuν ¼ −c2, with gμν being the
space-time metric and c an arbitrary, constant velocity, and
the flow carries scalars nY defined as particle or molecule
numbers per unit volume, except the scalar n1 ¼ S asso-
ciated with entropy, which defines entropy per unit volume.
The usual convention c ¼ 1 is not used here because the
limit c → ∞ will be needed later. All species are described
through their associated current defined by Uμ

Y ¼ JnYuμ,
with J ¼ Jrel ¼ ð1=cÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det gμν
p

. Conversely, nY can be
obtained from UY as

nY ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνU

μ
YU

ν
Y

q
=cJ: ð5Þ

The equation of state of the fluid is described by the total
energy per unit volume EðnYÞ. dE ¼ μYdnY , with μY

chemical potentials (except μ1 ¼ T, which is the temper-
ature). Defining the action as minus the space-time integral
of energy [6],

Srel ¼ −
Z

Eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνU

μ
YU

ν
Y

q
=cJÞJd4x; ð6Þ

Eq. (4) yields nYuβð∂βπ
Y
α − ∂απ

Y
β Þ ¼ 0, with momenta

πYμ ¼ c−2μYuμ.
Let us now turn to nonrelativistic motion. In this context,

it would make the most sense to use time as the coordinate
x0, but for the sake of covariance we introduce absolute
time as a scalar tðxμÞ in an arbitrary coordinate system and
define tμ ≡ ∂μt. When dx0 ¼ dt, we will say that the
coordinate system is classical. In this particular case,
tμ ¼ δ0μ. In addition to tðxμÞ, a metric-Coriolis-geopotential
tensor Hμν is introduced whose role is to define free-fall
trajectories as those that minimize the action:

Sfall½xμðλÞ� ¼
1

2

Z
Hμνuμuνdt; uμ ≡ dxμ

dt
; ð7Þ

where xμðλÞ is a world line such that tμdxμ ≠ 0. Notice that
uμtμ ¼ 1 by design; hence, u0 ¼ 1 in classical coordinates.
For example, with

dσ2 ≡Hμνdxμdxν ¼ −2Vdt2 þ dx2 þ dy2 þ dz2; ð8Þ

the Euler-Lagrange equations ðd=dtÞðHμνuνÞ¼1
2
uαuβ∂μHαβ

yield the Newtonian free-fall equations in a Cartesian,
inertial frame ðt; x; y; zÞ in the presence of a gravitational
field Vðx; y; z; tÞ [1].
For geophysical applications, dσ2 is reexpressed in a

rotating frame and approximated [9]. The resulting model
admits a global, Euclidean inertial frame if it is possible, by
a change of coordinates, to transform dσ2 back to Eq. (8).
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Sometimes such a transformation is impossible because
approximations introduce three-dimensional curvature [10]
or destroy global inertial frames [11]. A classical model
exemplifying the latter is the equatorial β-plane approxi-
mation

dσ2 ¼ −2gzdt2 þ dx2 þ dy2 þ dz2 − βy2dxdt: ð9Þ

The cross term −βy2dxdt is responsible for the Coriolis
force and the lack of an inertial frame. Therefore, for the
sake of generality it is important to look beyond Eq. (8) and
consider a general Hμν.
The volume form Jd4x is given the covariant definition

J ¼ Jgeo ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
ε→0

det ðε−1tμtν þ εHμνÞ
q

; ð10Þ

which, in classical coordinates, yields J ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detHij

p
, with

i, j ¼ 1, 2, 3. Indeed Hij is then the nonsingular 3 × 3

spatial metric tensor.
The fluid and its motion are described by N transported

scalars qX and a single current representing the mass flux
Uμ ¼ Jρuμ, where ρ is the total mass per unit volume. The
scalars are mixing ratios (in kg=kg), except for q1, which is
specific entropy. Energetics are specified through the
specific internal energy eðv; qYÞ, such that de ¼ −pdvþ
χYdqY , where v ¼ 1=ρ is the specific volume, p is the
pressure, and χY is the chemical potential per unit mass
(with the exception of χ1 ¼ T).
From Uμ one recovers ρ ¼ tμUμ=J, uμ ¼ Uμ=ρJ. The

action is then defined as

Sgeo ¼
Z �

1

2
Hμν

UμUν

tαUα − Jϵ

�
tβUβ

J
; qX

��
d4x; ð11Þ

where ϵðρ; qXÞ ¼ ρe. δSgeo ¼ 0 generates the equations of
motion

uβð∂βπα − ∂απβÞ þ χX∂αqX ¼ 0;

where πμ ¼ Hμνuν − tμ

�
eþ p

ρ
þ 1

2
Hαβuαuβ

�
:

As only three of the four above equations are independent,
it is natural in classical coordinates to keep α ¼ i ¼ 1, 2, 3:

∂tπi þ ujð∂jπi − ∂iπjÞ − ∂iπ0 þ χX∂iqX ¼ 0; ð12Þ

where −π0 ¼ K þ eþ p=ρ, with K ¼ 1
2
Hαβuαuβ −H0νuν.

In an inertial, Cartesian frame, Eq. (11) coincides with
the well-established action for a perfect fluid [3,12] and
Eq. (12) is Crocco’s theorem. More generally, in a classical,
rotating frame, with curvilinear Eulerian coordinates,
Eq. (11) coincides with the action considered in Ref. [9]
and Eq. (12) reduces to their Eq. (18).

Having derived relativistic and geophysical hydrody-
namics from a common least action principle, we now
wish to relate their two different actions. For this, consider
a family of space-time metrics gμνðcÞ. If dτ ¼
c−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdxμdxν

p
→ dt as c → ∞ for some scalar field

tðxμÞ, time intervals measured by clocks along world lines
with identical end points become independent of the world
line; i.e., synchronicity is recovered. This property is
satisfied by

gμν ≡ −c2tμtν þHμν: ð13Þ

Notice that Eq. (13) is also obeyed to Oðc−2Þ in the weak-
gravity, slow velocity limit [13]. However, in that limit,
gμνðcÞ obeys Einstein’s equations, which constrain Hμν,
while gμν and Hμν in Eq. (13) are not constrained by
gravitational equations.

Since dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c−2Hμνuμuν

q
dt, the least action prin-

ciple δ
R
dτ ¼ 0 defining space-time geodesics tends to that

defining the classical free-fall trajectories:

−c2δ
Z

dτ ¼ δ

Z
1

2
HμνuμuνdtþOðc−2Þ:

Indeed, the Oðc2Þ term c2
R
dt has vanishing variations

because the end points are kept fixed. Similarly, Jrel → Jgeo
as c → ∞.
Now define the total energy in Eq. (6) as E ¼

c2mYnY þ ϵ, with mY being the mass per particle or
molecule (m1 ¼ 0). Then dE ¼ μYdnY , with μY ¼
mYðc2 þ χYÞ (with the exception of μ1 ¼ T). As c → ∞,
the Oðc2Þ term of Srel is again a boundary term
mY

R ∂αðtUα
YÞd4x. Variations of the relativistic action there-

fore reduce to δSrel ¼ δSgeo þOðc−2Þ.
Mass-momentum budget.—Thus far, relativistic and

geophysical hydrodynamics have been cast as Eq. (4) with
properly defined actions, and the geophysical action has
been interpreted as a synchronous limit of the relativistic
action. Besides Eq. (4), another fundamental formulation of
relativistic hydrodynamics is in the form of a mass-
momentum budget,

DμTμν ¼ 0;

where Tμν is the mass-momentum stress tensor and Dμ is
the covariant derivative associated with the Levi-Civita
connection Γμ

αβ ≡ 1
2
gμνð∂αgνβ þ ∂βgαν − ∂νgαβÞ. We finally

use Noether’s theorem to derive a similar budget for
geophysical and Newtonian hydrodynamics. Indeed, action
(11) is invariant under arbitrary changes of space-time
coordinates, i.e., if all its arguments, including the back-
ground fields J, tμ, Hμν, have variations in Lie form:
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δJ ¼ ∂γJ þ J∂γξ
γ;

δtμ ¼ ξα∂αtμ þ tα∂μξ
α;

δHμν ¼ ξβ∂βHμν þHαν∂μξ
α þHμα∂νξ

α:

Now, since the variations are in Lie form, one may replace
∂μ with the covariant derivative ∇μ associated with any
torsion-free connection γαμν ¼ γανμ. As shown below, Γμν has
a finite limit as c → ∞ in Eq. (13). This provides a natural
connection with which to endow geophysical space-time.
Since the least action principle implies that the variation δS
due to qX, UY vanishes, what remains after integration by
parts is

−∇α

�
2

∂l
∂Hαβ

Hγβ þ tγ
∂l
∂tα þ J

∂l
∂J δ

α
γ

�
þ ∂l
∂J∇γJ

þ ∂l
∂Hαβ

∇γHαβ þ
∂l
∂tα ∇γtα ¼ 0; ð14Þ

where J is formally considered an independent argument of
l. Using identities (17) and (18) derived below, Eq. (14)
simplifies into mass-momentum budget (20).
Assuming Eq. (13), some algebra yields

gμν ¼ Gμν − ðc2 þ 2VÞ−1eμeν; ð15Þ

where VðxαÞ is such that Gμν ≡Hμν þ 2Vtμtν is singular,
Gμν is the pseudoinverse ofGμν such thatGμνtμ ¼ 0, and eμ

is the null vector of Gμν such that eνtν ¼ 1. As a result,
HμνGνσ ¼ GμνGνσ ¼ δσμ − eσtμ. Equation (15) shows that
as c → ∞, gμν → Gμν, a rank-3 tensor that defines a spatial
metric on the three-dimensional slices tðxμÞ ¼ cst. More
algebra shows that Γμ

αβ → γμαβ, with

γμαβ ≡ 1

2
Gμνð∂αHνβ þ ∂βHαν − ∂νHαβÞ þ eμ∂αβt: ð16Þ

The covariant derivative Dμ associated with Γμ
αβ preserves

the metric Dγgαβ ¼ 0, Dγgαβ ¼ 0, Dγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det−gμν

p ¼ 0.
Furthermore, DαðgγδgγβÞ ¼ 0 and GγδHγβ ¼ δδβ − tβeδ.
Letting c → ∞ in those identities yields

∇μtα ¼ 0; ∇μGαβ ¼ 0; ∇μJ ¼ 0; ð17Þ

Gγδ∇αHγβ þ tβ∇αeδ ¼ 0: ð18Þ

Contracting Eq. (14) with Gγδ and using Eqs. (17) and
(18) yields

∇αTαδ ¼ eδ∇αðtβTαβÞ;

where Tμν ≡ 2

J
∂l

∂Hμν
þ ∂l
∂J G

μν ð19Þ

defines the mass-momentum stress tensor. Finally, the
expression of l implied by Eq. (11) yields the desired
mass-momentum budget:

Tμν ¼ ρuμuν þ pGμν; ∇μTμν ¼ 0; ð20Þ

where tβTαβ ¼ ρuα, J∇αðtβTαβÞ ¼ ∇αUα ¼ 0 has been
used.
Summary and discussion.—A least action principle valid

for all hydrodynamics has been identified. Relativistic
hydrodynamics derive from action (6), while geophysical
models, possibly lacking inertial frames, derive from action
(11), interpreted as a synchronous limit of Eq. (6).
Relativistic dynamics involve a space-time metric which
defines a Levi-Civita connection. Similarly, geophysical
models involve a metric-Coriolis-geopotential tensor Hμν

which defines a connection (16). This new family general-
izes the Newton-Cartan connection [4–6], obtained in the
special case (8). A covariant mass-momentum budget (20)
for geophysical models has been derived from the covari-
ance of the action. In terms of applications, Eq. (12) is at the
heart of recent energy-conserving numerical schemes
[14,15]. Following Ref. [16], discretizing δS ¼ 0 itself
may also be possible. These results call for some final
remarks.
Geometry of geophysical space-time.—Unlike in

Ref. [17], covariance is not restricted to transforms between
classical coordinates. This full covariance allows the use of
Noether’s theorem to derive the mass-momentum budget
(20), from which gravitational, Coriolis, and centrifugal
forces are apparently absent. Indeed, Eq. (20) treats them
not as forces but as a geometric property of space-time. The
corresponding source terms are included (hidden) in the
covariant derivative.
Mass-momentum stress tensor.—In the relativistic case,

Eq. (14) holds with gμν in lieu ofHμν and without tμ, so that
preservation of the metric by Dμ is enough to yield
DμTμν ¼ 0 for an arbitrary Lagrangian. In the geophysical
case, the covariance of the action and the metric-preserving
properties (17) and (18) of the connection alone are not
enough, and the Lagrangian cannot be arbitrary for Eq. (20)
to hold: it must be such that tβ∂l=∂Hαβ be nondivergent.
This requirement is related to Eq. (11) being the limit of
Eq. (6) as c → ∞. For this limit to exist, the Oðc2Þ term
must be a pure boundary term, which keeps the Oðc2Þ term
of EðnYÞ linear in nY , implying in turn that the c → ∞ limit
of EðnYÞ is of the classical form K − P, with JK ¼
HαβUαUβ=ðtμUμÞ being the kinetic energy and P some
function of tμUμ=J, qY .
Dynamics vs gravitation.—Usually, the laws of motion

of a point mass or a fluid subject to gravity are conceptually
split into a fundamental principle of dynamics (FPD) and a
theory of gravity. In a classical context, the standard FPD
states that mass times acceleration equals force in inertial
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frames, while the law of gravity specifies the force. In a
relativistic context, action (6) governs dynamics, while
Einstein’s equations specify gμν.
Using the present results, the relativistic distinction

between dynamics and gravitation can be transposed to a
classical context, building upon and extending Ref. [4].
Indeed, since Eq. (11) is the synchronous limit of Eq. (6), it
makes sense to regard Eqs. (16) and (20) as the general
form of the classical FPD, to be complemented by a theory
of gravity which fully specifies Hμν. For Newtonian
gravity, it would include the law for the gravitational
potential and the postulate that inertial frames exist.
Drawing the boundary between dynamics and gravitation
this way differs from the standard way, where the postulate
about inertial frames is part of the FPD.
From this point of view, both geophysical and

Newtonian hydrodynamics are governed by the classical
FPD [Eqs. (16) and (20)], but in space-times obeying
different laws of gravity, namely, geophysical hydrody-
namics being allowed to slightly deviate from the
Newtonian laws of gravity.
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