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We demonstrate that ultrashort pulses carry the possibility for a new regime of light-matter interaction
with nonadiabatic electron processes sensitive to the envelope derivative of the light pulse. A standard
single pulse with its two peaks in the derivative separated by the width of the pulse acts in this regime like a
traditional double pulse. The two ensuing nonadiabatic ionization bursts have slightly different ionization
amplitudes. This difference is due to the redistribution of continuum electron energy during the bursts,
negligible in standard photoionization. A time-dependent close-coupling approach based on cycle-
averaged potentials in the Kramers-Henneberger reference frame permits a detailed understanding of
light-pulse derivative-driven electron dynamics.
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With increasingly shorter pulses becoming available in
the optical and vacuum ultraviolet domain, it has been
noticed that the light-pulse envelope influences the out-
come of experiments. Most widely known is the influence
of the carrier envelope phase quantifying the shift of the
periodic carrier wave relative to the maximum of the pulse
envelope [1]. Also, effects of the spatial envelope depend-
ence beyond the dipole approximation of light-matter
coupling [2,3] and a chirp on the ultrashort pulse [4] have
been pointed out. A more indirect effect is induced by
the time-dependent ac-Stark shift of energy levels which
follows the pulse envelope. It gives rise to dynamic
interference [5,6], termed as such and elegantly explained
in Refs. [7,8]. Inspired by earlier work [5], the envelope
Hamiltonian was introduced [9], which explicitly separates
the optical periodic time dependence from that of the
envelope variation and permits therefore a clear distinction
of multiphoton [10] and nonadiabatic [11] ionization under
short pulses. Much earlier and on much longer time scales
of Rydberg excitation and femtosecond pulses, pulse
envelope effects, mostly in connection with transient
Stark shift enabled resonances, were pointed out [12–17].
Despite these various notions on effects of the pulse

envelope, the simple but dramatic consequences for non-
adiabatic ionization and the possibilities these conse-
quences carry have not yet been addressed: Plainly put,
in the regime of extreme nonadiabatic matter-light cou-
pling, electron dynamics becomes sensitive to the light-
pulse derivatives. Hence, a standard Gaussian laser pulse
acts as a double pulse through the two peaks of its
derivative. With the Gaussian pulse as an example, we
will establish that, in general, nonadiabatic electron dynam-
ics is sensitive to the pulse envelope derivative (PED) of the
laser pulse rather than to the envelope (maximum) itself.
Nonadiabatic dynamics occurs for states which change

fast as a function of an external parameter [18]. Molecules

are the most widely known examples, where the electronic
Born-Oppenheimer states depend parametrically on the
nuclear positions. In the present context, we formulate the
electronic state as parametrically dependent on the pulse
envelope. The ensuing nonadiabatic ionization is exclusively
due to PED, as we will see below. Therefore, nonadiabatic
ionization is complementary to dynamic interference, reso-
nant population trapping, or Rydberg multiphoton ionization
[7,12–17]. These are adiabatic phenomena in the sense that a
resonance condition for an energy difference of bound states,
well defined at each time during the pulse, is fulfilled twice,
during the rise and fall of the pulse, respectively. These two
times are, in general, not where the envelope derivative
peaks, as is the case for nonadiabatic ionization. Moreover,
the resonant effects mask nonadiabatic ionization and its
low-energy photoelectron peak, as we discuss here.
Otherwise, nonadiabatic ionization could have already been
identified in the 1990s, in particular, in Rydberg experiments
such as Ref. [17].
To demonstrate that nonadiabatic ionization is indeed

sensitive only to the change of the pulse envelope, we will
consider a pulse with a short rise and fall encompassing a
plateau of variable duration Tc. This allows us to analyze and
understand the subtle differences of the beginning and the
end of the pulse separately and to demonstrate that illumi-
nation with a maximal amplitude during the plateau has no
effect on nonadiabatic ionization. Shrinking the plateau to
Tc ¼ 0, we will arrive at the normal single ultrashort pulse,
whose effect is then easily understood in terms of the
(already analyzed) rising and falling part of the pulse.
Although the envelope-derivative effects we are going to

investigate are independent of the theoretical description, we
deliberately choose the envelope Hamiltonian [9], since it
reveals in connection with a time-dependent close-coupling
(CC) representation the mechanism of envelope-driven
nonadiabatic electron dynamics, including subtle effects
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such as the reshuffling of electron energy in the continuum.
To this end, we Fourier expand the periodic time dependence
of the electron potential Vðx; tÞ in the Kramers-Henneberger
frame, keeping the time evolution of the pulse envelope
explicit [atomic units (a.u.) are used unless stated otherwise]:

Vnðx; tÞ ¼
ω

2π

Z
2π=ω

0

einωt
0
V(xþ αðtÞez cosðωt0 þ φÞ)dt0;

ð1Þ

where xωðtÞ ¼ αðtÞez cosðωtþ φÞ can be understood as the
trajectory of a free electron in the laser electrical field
linearly polarized along ez and defined by the second
derivative of xωðtÞ. While to a very good accuracy an
expansion length of nmax ¼ 2 is sufficient in the potentials
(1) as shown before [9], nonadiabatic dynamics sensitive to
the envelope derivative dα=dt is mainly described through
V0ðx; tÞ with eigenstates and energies parametrically de-
pendent on time in

½H0ðtÞ − EβðtÞ�jψβðtÞi ¼ 0; ð2Þ

where H0 ¼ − 1
2
∇2 þ V0.

This is directly illustrated for a flattop pulse in Fig. 1. It is
constructed from a Gaussian pulse extended by inserting at
its maximum a plateau of length Tc; see Fig. 1(a). To keep
the analysis as simple as possible, we use a one-
dimensional model potential for a weakly bound electron
introduced in different contexts before [19] as a specific
example. We compare the photoelectron spectrum obtained
from the solution of the time-dependent Schrödinger
equation (TDSE) with the full Hamiltonian and with H0.
Both solutions agree quite well for slow electrons E=ω ≪ 1

[compare lines and symbols in Fig. 1(b)] implying a
nonadiabatic regime with envelope-derivative-driven elec-
tron dynamics. Since this derivative has two peaks during
the rise and fall of the pulse, respectively, but vanishes
during the plateau of the pulse, we expect two ionization
bursts which generate a typical two-slit interference pattern
as a function of plateau length Tc in the electron spectrum:

PEðTcÞ ¼ aE cos ðφE − δETcÞ þ cE: ð3Þ

Indeed, for any fixed energy E the ionization yield
oscillates perfectly as a function of plateau length Tc, as
shown in Fig. 1(b). Fitting (3) to these yields, we can
extract φE and δE, which allows us to determine from

φE − δETc ¼ nπ ð4Þ

the maxima (n even, dashed line) and minima (n odd,
solid line) in very good agreement with the numerical
spectra as shown in Fig. 1(c). In the (E, Tc) plane, the
functional form Tc ∝ E−1 of these extrema follows directly
from the difference between the final and initial energy,
δE ¼ E − E⋆

g . Note, however, that, in contrast to standard
double pulses, the light pulse illuminates the target with the
maximal amplitude between the (nonadiabatic) ionization
bursts. Therefore, E⋆

g is the initial energy dressed by the
laser field, as indicated by the star.
As a next step, we take a closer look at the ionization

bursts themselves. The fast rising and falling half-pulses
generate the electron spectra shown in Figs. 2(e) and 2(f)
with solid lines, respectively. We have obtained these
spectra by wave-packet partitioning: We solve the TDSE
for H0 with the electron initially in the ground state

(a)
(c) (d)

(b)

FIG. 1. Nonadiabatic ionization. (a) A flattop laser pulse rising (↑) and falling (↓) over a time span of T=2 ¼ 25.5 a:u: between the
maximum of the electric field amplitude FðtÞ and its maximal derivative. These two Gaussian half pulses, which act similarly as a pump
and probe pulse in the nonadiabatic regime, encompass a plateau of duration Tc. (b) Electron spectra for two energies as a function of
plateau length Tc for an electron initially bound by a weak potential at energy Eg ¼ −0.0277 a:u: exposed to a laser pulse of peak
amplitude F ¼ 0.5 a:u: and frequency ω ¼ 0.314 a:u:; see the text. TDSE solutions with the full Hamiltonian are given as lines and with
H0 from Eq. (2) as symbols. (c) Nonadiabatic electron spectrum PEðTcÞ. The lines mark the maxima and minima predicted from Eq. (4).
(d) Phase difference φE, extracted by fitting Eq. (3) to spectra for fixed E as in (b) (symbols); from benchmark calculations obtained
through wave-packet partitioning (see the text) for the Gaussian pulse, i.e., Tc ¼ 0 (solid line); and approximated with Eq. (7) (dashed line).
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ψgðt → −∞Þ. Projecting at the end of the rising half-pulse at
t ¼ 0 onto the instantaneous continuum eigenstates ψE of
H0 at the maximal field [Fig. 2(a)], we obtain the spectrum
of the first burst [Fig. 2(e)]. For the falling half-pulse we
begin the propagation in the (dressed) ground state ψ⋆

g at the
maximal field [Fig. 2(c)] and obtain the spectrum of the
second burst from ψEðt → ∞Þ; see Fig. 2(f). Underscoring
again the nonadiabatic dynamics, the result is the same [see
the solid lines in Figs. 2(e) and 2(f)] if we amend the left
half-pulse with a slowly decaying tail [half width
Tad ¼ 850 a:u:, Fig. 2(b)] and start the right half-pulse with
an equally slow rise [Tad ¼ 850 a:u:, Fig. 2(d)]. Since the
concatenation of the two half-pulses should be identical to
our pulse for Tc ¼ 0, i.e., a Gaussian pulse, we expect that
the phase φE in (3) is given by the phase difference φE ¼
φ↑ðEÞ − φ↓ðEÞ of the two burst amplitudes A↑↓ðEÞeiφ↑↓ðEÞ.
This is indeed the case, as shown in Fig. 1(d). Note that,
suitable for nonadiabatic dynamics, we measure the
amplitude pulse length T here as the time span between
the maxima in the derivative of the pulse envelope which
is related to the standard measure of full width at
half maximum (FWHM) of the envelope τ through
T ¼ τ=ð2 ln 2Þ1=2 ¼ 0.85τ.
Interestingly, the electron spectra from the rising (↑)

and falling (↓) half-pulse differ slightly, although the

total (energy-integrated) ionization yield is the same, in
our example P↑ ≡

R
A↑

2ðEÞdE ¼ P↓ ≡
R
A↓

2ðEÞdE ¼
0.03247 a:u: [20]. This suggests that absorption from the
initial state does not depend on the character of the half-
pulse (rising or falling), while there must be a mechanism
of redistributing energy in the continuum, sensitive to the
sign of the pulse derivative. In contrast to the fully
numerical solutions presented so far, a CC representation
in a basis allows us to distinguish nonadiabatic bound-
continuum MEg from continuum-continuum MEE0 transi-
tions, with the transition matrix elements

MEβðtÞ ¼
hψEðtÞj∂tV0ðx; tÞjψβðtÞi

E − EβðtÞ
ð5Þ

for both cases. Inserting the wave function jΨðtÞi ¼PR
β
jψβðtÞie−i

R
t Eβðt0Þdt0cβðtÞ into the TDSE with the

Hamiltonian H0ðtÞ, the matrix elements (5) govern the
evolution of the time-dependent amplitudes cβðtÞ through [9]

dcg
dt

¼ −
Z

∞

0

cEMEge−iϕgdE; ð6aÞ

dcE
dt

¼ cgMEgeiϕg þ
Z

∞

0

cE0MEE0eiϕE0dE0 ð6bÞ

with the phases

ϕβðtÞ ¼
Z

t
½E − Eβðt0Þ�dt0 ð6cÞ

for the ground state β ¼ g or a continuum state with energy
β ¼ E0, respectively. Note that MEβ is real and MEE ¼ 0.
As expected, the CC spectra for the left and right half-

pulses are indistinguishable from our full numerical spectra
obtained by wave-packet partitioning; see Fig. 3. If we,
however, calculate the left and the right spectra without the
continuum-continuum coupling MEE0 in Eqs. (6), they
become identical (see the dashed-dotted curves in Fig. 3)
and still produce the same total ionization yield as in the
full calculation. Consequently, the already ionized (con-
tinuum) electrons are redistributed towards higher energy
through MEE0 during the rising half-pulse while being
reshuffled towards lower energy in the continuum for the
falling half-pulse. This explains the difference in the two
burst spectra. The continuum energy reshuffling is another
(subtle) effect of PED-induced electron dynamics. It is
absent in traditional double pulses with a slowly varying
envelope, since for those pulses the matrix element MEE0

will be negligible.
Following our argument so far, the electron spectrum (3)

for a single Gaussian pulse (Tc ¼ 0) is composed from the
coherent superposition of the slightly different burst ampli-
tudes. Since they are created close to the maxima of the

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Nonadiabatic electron spectra from Gaussian half-
pulses. (a) Sketch of the partitioning approach for the rising
(↑) half-pulse. (b) The artificial laser field with the falling pulse
length Tad long enough to not affect nonadiabatic dynamics while
the rising part has as before T=2 ¼ 25.5 a:u: (Note that for the
figure sketch Tad ¼ 170 a:u:, while in the calculations Tad ¼
850 a:u: has been used, which is sufficiently long to obtain
converged results.) (e) The photoelectron spectrum from the
partitioning approach as sketched in (a) (lines) and from the
artificial laser field as in (b) (symbols). (c), (d), and (f) show
information analogous to (a), (b), and (e), respectively, but for the
falling (↓) half-pulse instead of the rising half-pulse. The peak
field strength and laser frequency are the same as in Fig. 1.
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envelope derivative at times �T=2, their phases differ
during the interval T between the two bursts, and therefore
the phase difference in Eq. (4) may be approximated using
Eq. (6c) as

φE ¼ −ET þ
Z þT=2

−T=2
EgðtÞdtþ π; ð7Þ

where π is a consequence of the opposite sign of the two
burst amplitudes. One sees in Fig. 1(d) that Eq. (7)
describes φE well, in particular, for small energies E.
There is, however, one last element missing, namely, that

the first electron burst amplitude A↑ðEÞ gets modified by the

second half-pulse to ~A↑ðEÞ in that energy is shuffled through
MEE0 towards lower energies, partially canceling the con-
tinuum shuffling during the first half-pulse towards higher
energies. As a result, the spectra of the two electron bursts
are more similar when combined in a full pulse (blue and red
curves in Fig. 4) than if considered separately as in Figs. 2
and 3. Still, the two burst amplitudes are not identical after
the end of the pulse, apart from a single point in energy
E ≈ 0.02 a.u. where they cross. As expected from the phase
difference φE, the two burst amplitudes interfere and
produce oscillations in the spectrum as a function of energy
E. Since their period is larger than the energy interval
covered by the nonadiabatic ionization peak, it is necessary
to normalize the spectrum with its major variation in energy
in order to uncover the oscillations; see the inset in Fig. 4.
Hence, our analysis of nonadiabatic ionization in terms of
electron bursts induced by half-pulses has lead us to a
surprising reinterpretation of the photoelectron spectrum at
low energies (gray area in Fig. 4) including the identification
and explanation of an oscillatory structure, clearly visible in
the normalized spectrum P̄E.
We finally come back to the modification of the first

burst by the second half-pulse, which is also known from
standard double pulses in the adiabatic regime. It simply

means that the wave packet of the first burst is still
in the vicinity of the potential with range d during the
second half-pulse. Modifications are expected if d=D≡
d=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Epeak

p
=T < 1, where D is the distance traveled by the

continuum wave packet during the time T elapsed between
the two bursts, estimated from its most probable energy
Epeak. Note that here T is just the width of the single short
(Gaussian) pulse. With the flattop pulse we have introduced
in the beginning, we can probe the evolution of the
modification, since there the time between bursts is given
by T þ Tc. Indeed, the modification of the first burst
vanishes for a long plateau as one can see in Fig. 5.
In summary, in the regime of nonadiabatic light-matter

interaction, electron dynamics is sensitive to the envelope
derivative of a light pulse. Therefore, a typical short Gaussian
pulse acts like a “double pulse” through its twomaxima in the
envelope derivative, separated by T ¼ 0.85τ, where τ is the

FIG. 3. Energy reshuffling of continuum electron wave packets.
Photoelectron spectra from the rising (red) and falling (blue) half-
pulses. Results are obtained by the CC equations (6) with (solid
and dashed lines) and without (dashed-dotted lines) the continuum
coupling contribution MEE0 , as well as with wave-packet parti-
tioning (symbols). The laser parameters are the same as in Fig. 1.

FIG. 4. The nonadiabatic electron spectrum of a single
Gaussian pulse of width T ¼ 51 a:u: (dashed-dotted line) and
combined from the sequence of a rising and falling half-pulse
with T=2 ¼ 25.5 a:u: (open circles). In addition the contribution
from the first electron burst ~A↑

2ðEÞ (solid, red line) and the
second one A↓

2ðEÞ (dashed blue line) are shown. The inset
reveals Stueckelberg oscillations [21] of the normalized spec-
trum, P̄E ≡ PE=½2 ~A↑

2ðEÞ þ 2A↓
2ðEÞ�. The laser parameters are

the same as in Fig. 1.

FIG. 5. Photoelectron spectrum A↑
2ðEÞ of a rising half-pulse

only as in Fig. 2(e) (solid red line) and ~A↑
2ðEÞ modified by the

falling half-pulse for different plateau lengths Tc (Tc ¼ 0, dashed
black line; Tc ¼ 2000 a:u:, dashed-dotted blue line). The laser
parameters are the same as in Fig. 1.
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FWHM of the Gaussian envelope. It creates two ionization
bursts, which can also be interpreted as being composed from
two ionization paths for each final electron energyE. Between
the two bursts, some electron amplitude of the first path is
already in the continuum, while the one of path two is still in
the (laser-dressed) ground state. This gives rise to a phase
difference proportional to the energy difference of the two
paths and the time T over which this energy difference exists
and leads to an interference structure in the nonadiabatic part
of the electron spectrum produced by a single short Gaussian
pulse. Another subtle feature is the energy reshuffling in the
continuum which has the opposite effect on bursts produced
by the rising and falling half-pulse, respectively.
Clearly, nonadiabatic short-pulse-induced electron dyna-

mics carries unusual features which we have described
here. They can occur whenever the pulse envelope changes
on the relevant electronic time scale. They will be most
prominent for ultrashort pulses, where resonant excitation
is less likely to dominate. Sensitive to the derivative of the
pulse envelope, these features provide new avenues to
coherently steer electron dynamics when light-pulse deriv-
atives can be controlled.
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