
 

Pion Condensation by Rotation in a Magnetic Field
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We show that the combined effects of a rotation plus a magnetic field can cause charged pion
condensation. We suggest that this phenomenon may yield to observable effects in current heavy ion
collisions at collider energies, where large magnetism and rotations are expected in off-central collisions.
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Introduction.—The combined effects of rotations and
magnetic fields on Dirac fermions are realized in a wide
range of physical settings, ranging from macroscopic
spinning neutron stars and black holes [1] all the way to
microscopic anomalous transport in Weyl metals [2]. In any
number of dimensions, strong magnetic fields reorganize
the fermionic spectra into Landau levels, each with a huge
planar degeneracy that is lifted when a parallel rotation is
applied. The past decade has seen great interest in the chiral
and vortical effects and their relationship with anomalies
(see Ref. [3] and references therein).
Perhaps a less well-known effect stems from the dual

combination of a rotation and a magnetic field on free or
interacting Dirac fermions. Recently, it was noted that this
dual combination could lead to novel effects for composite
fermions at half filling in 1þ 2 dimensions under the
assumption that they are Dirac fermions [4], and more
explicitly for free and interacting Dirac fermions in 1þ 3
dimensions [5–7]. Indeed, when a rotation is applied along
a magnetic field, the charge density was observed to
increase in the absence of a chemical potential. A possible
relationship of this phenomenon to the Chern-Simons term
in odd dimensions and to the chiral anomaly in even
dimensions was suggested. Recently, there have been a few
studies along these lines using effective models of the NJL
type in 1þ 3 dimensions, where the phenomenon of charge
density enhancement was also confirmed with new obser-
vations [6–8].
Current heavy ion collisions at collider energies in

noncentral collisions involve large angular momenta in
the range 103–105ℏ [9,10]. Recently, STAR reported a large
vorticity with Ω ∼ ð9� 1Þ1021 s−1 ∼ 0.05mπ , by measur-
ing the global polarization of Λ and Λ̄ in off-central Au-Au
collisions in the Beam Energy Scan program [11]. During

the prompt part of the collision, large magnetic fields
B ∼m2

π are expected [12]. In this Letter, we show that the
combined effects of magnetism plus rotation can induce a
pion superfluid phase in off-central heavy ion collision.
This superfluid phase may be at the origin of the large
multipion correlations reported by ALICE [13], as is also
suggested by a recent nonequilibrium study [14].
In this Letter, we first illustrate the basic mechanism at

the origin of pion condensation. Next, we quantize the
Klein-Gordon equation in a moving frame. We then make
explicit the requirements for pion condensation for a
charge-neutral system, estimate its amount in current heavy
ion collisions at collider energies, and finally end with our
conclusions.
Mechanism.—In the presence of a fixed magnetic field in

the þz direction, B ¼ Bẑ, the charged π� pion spectrum is
characterized by highly degenerate Landau levels (LLs):

Enp ¼ ðjeBjð2nþ 1Þ þ p2 þm2
πÞ12; ð1Þ

with p being the pion momentum along the 3 direction,
each with a degeneracyN ¼ jeBjS=2π, with S ¼ πR2 being
the area of the plane transverse to B. We will assume that
the magnetic length lM ¼ 1=

ffiffiffiffiffiffiffiffiffijeBjp
≪ R for the LL to fit

within S. In the circular gauge, the degeneracies of the LLs
are identified with the eigenstates of the z component of the
angular momentum in position space. They are labeled by l,
which enters the azimuthal wave function as eilφ with the
restriction −n ≤ l ≤ N − n, where n labels the LL. For the
lowest Landau level (LLL) with n ¼ 0, l has a fixed sign,
since 0 ≤ l ≤ N. After quantization, the angular momen-
tum for positive charged particles is l, and that for negative
charged particles is −l. This means that in the LLL, the πþ
spins along the magnetic field, while the π− spins opposite
to the magnetic field as illustrated in Fig. 1.
When a rotation Ω along the magnetic field is applied, it

causes the spectrum to shift linearly. Throughout, we will
consider the parallel case with Ω⃗ · B⃗ > 0 unless specified
otherwise. With this in mind, and in the rotating frame,
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Enp → Enp − ΩLz ≡ Enp − jΩl; ð2Þ

with j ¼ þ1 for positively charged pions (particles) and
j ¼ −1 for negatively charged pions (antiparticles). As a
result, the degeneracy of each LL is lifted. In particular, the
πþ in the LLL splits down, and the π− in the LLL splits up,
as also illustrated in Fig. 1. Since the chargeless pions π0

are unaffected by the magnetic field, their rotational shift
averages out. Also, we note that causality requires v ¼
ΩR ≤ 1 [7], which, together with the magnetic length
constraint (see above), translates to lM ≪ R < 1=Ω.
The mechanism of π� splitting by a rotation parallel to a

magnetic field in the LLL can cause πþ pion condensation.
Indeed, in the shifted spectrum (2), the combination μl ¼
Ωl plays the role of a chemical potential for πþ and −μl ¼
−Ωl for π−, in much the same way as noted for fermionic
particles and antiparticles in the LLL [1,7,15,16].
Therefore, when μN ¼ NΩ apparently exceeds the πþ

effective mass in the LLL, m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eBþm2

π

p
, but it is still

below the πþ effective mass in the first LL with n ¼ 1, the
LLL πþ may Bose-condense.
Klein-Gordon equation in rotating frame.—To support

Eq. (2), we now give a detailed derivation of the quantiza-
tion of the Klein-Gordon equation in a rotating frame both
for an infinite and for a finite volume V ¼ SL. For that, we
consider the metric for a rotating frame in 1þ 3 dimensions
with mostly negative signature ðþ;−;−;−Þ:

ds2 ¼ ð1 − Ω2ρ2Þdt2 þ 2yΩdxdt − 2xΩdydt − dr2: ð3Þ

The comoving frame is defined as ea ¼ eμa∂μ, with
ðe0; e1; e2; e3Þ ¼ ð∂t þ yΩ∂x − xΩ∂y; ∂x; ∂y; ∂zÞ. Now,
consider a constant magnetic field in the z direction, Bẑ,
as described by the circular vector potential ARμ ¼
Bð0; yR=2;−xR=2; 0Þ in the rest frame sublabeled by R.
The coordinate transformation to the rotating frame rR ¼
r; tR ¼ t; θR ¼ θ þΩt allows the rewriting of the vector
potential in the rotating frame as

Aμ ¼ Bð−Ωr2=2; y=2;−x=2; 0Þ: ð4Þ

In the rotating frame, there is, in addition to the magnetic
field Bẑ, an induced electric field E⃗ ¼ ΩBr⃗. This is
expected from a Lorentz transformation from the fixed
frame with Bẑ to the comoving frame with Bẑ and E⃗.
A charged scalar field Π in the rotating frame and

subject to the vector potential (4) is characterized by the
Lagrangian

L ¼ jðDt þ yΩDx − xΩDyÞΠj2 − jDiΠj2 −m2
πΠ†Π; ð5Þ

with the long derivative Dμ ¼ ∂μ þ ieAμ. We now note the
identity

Dt þ yΩDx − xΩDy ¼ ∂t þ yΩ∂x − xΩ∂y: ð6Þ

The electric field following from Eq. (4) cancels out. The
comoving frame corresponds only to a frame change with
no new force expected. With this in mind, the equation of
motion for the charged field in the rotating frame is

−ð∂t þ yΩ∂x − xΩ∂yÞ2Π −D†
i DiΠ −m2

πΠ ¼ 0: ð7Þ

In the infinite-volume case, we solve Eq. (7) using the
algebraic ladder construction with

a ¼ iffiffiffiffiffiffiffiffi
2eB

p ðDx þ iDyÞ;

b ¼ 1ffiffiffiffiffiffiffiffi
2eB

p
�
2∂ þ eB

2
z̄

�
: ð8Þ

Choosing the positive z direction to be that for which eB is
positive yields the operator identities

D†
xDx þD†

yDy ¼ eBð2a†aþ 1Þ;
Lz ¼ ið−x∂y þ y∂xÞ ¼ b†b − a†a: ð9Þ

The general stationary solution to Eq. (7) is of the form
Π ¼ eipz−iEtf, with f solving

ðEþ ΩLzÞ2f ¼ ðm2
π þ p2Þf þ eBð2a†aþ 1Þf: ð10Þ

The normalizable solutions form a tower of LLs

fmn ¼
1ffiffiffiffiffiffiffiffiffiffi
m!n!

p ða†Þnðb†Þmf00;

ðEmn þΩðm − nÞÞ2 ¼ eBð2nþ 1Þ þm2
π ≡ E2

n ð11Þ

with f00 ∼ e−ðeB=4Þðx2þy2Þ as the LLL. For the LL to fit in a
volume V ¼ LS, we needm; n ≤ N. The quantized charged
field Π in the rotating frame is

FIG. 1. Under the action of an external magnetic field B, the π�
undergo opposite rotations in the lowest Landau level (LLL),
which is degenerate. The action of a parallel rotation (Ω⃗ · B⃗ > 0)
lifts the degeneracy in the LLL. The energy of the πþ shifts down
and splits away from the energy of the π− that shifts up. The
action of an antiparallel rotation (Ω⃗ · B⃗ < 0) exchanges the roles
of πþ and π−.
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Π ¼
Z

dp
2π

X
nm

fmnffiffiffiffiffiffiffiffi
2En

p ðanmpe−iE
þtþipz þ b†nmpeiE

−t−ipzÞ;

ð12Þ

with the bosonic canonical rules

½bnmp; b
†
n0m0p0 � ¼ ½anmp; a

†
n0m0p0 � ¼ 2πδnn0δmm0δðp − p0Þ:

The particle state created by a†nmp has energy Eþ ¼
En −Ωðm − nÞ, chargeþe, and orbital angular momentum
in the z direction asm − n. The antiparticle state created by
b†nmp has energy E− ¼ En þ Ωðm − nÞ, charge −e, and
orbital angular momentum in the z direction as −mþ n.
Therefore, the energy relationship between the rotating
frame and the rest frame is E ¼ ER −ΩLz. This is in
agreement with Eq. (2), where we have set l ¼ m − n and
defined Lz ¼ jl with j ¼ þ1 for the particle or positive
charge state and j ¼ −1 for the antiparticle or negative
charge state.
In a finite volume, Eq. (7) can be solved using instead the

circular wave functions with zero boundary conditions:

flðr; θÞ ¼ eilθrjlje−ðeBr2=4Þ1F1

�
−a; jlj þ 1;

eBr2

2

�
; ð13Þ

where 1F1 is a hypergeometrical function with the param-
eter

−aðlÞ ¼ 1

2
ðjlj − lþ 1Þ − 1

2eB
ððEþΩlÞ2 − p2 −m2

πÞ:
ð14Þ

Thus, for positive angular momentum states, we have

ðEþ ΩlÞ2 ¼ p2 þm2
π þ eBð2aðlÞ þ 1Þ;

1F1

�
−aðlÞ; lþ 1;

eBR2

2

�
¼ 0: ð15Þ

The zero of the hypergeometric function fixes aðlÞ, and
therefore the LL for a finite volume. For example, for N ¼
25 we have l ¼ 20, and aminð20Þ ¼ 0.43, for which the
energy is E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 1.86eB
p

− 20Ω. For eB ¼ m2
π, the

threshold rotation is Ωc ¼ ð1.69=20Þ ffiffiffiffiffiffi
eB

p
. Note that for

N ¼ 25, we have R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
50=eB

p
, and the luminal constraint

is still fulfilled, since ΩcR ¼ 0.59 < 1. For N ¼ 100, we
have l ¼ 84, and aminð84Þ ¼ 0.18, for which the energy isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 1.36eB
p

− 84Ω with the thresholdΩcR ¼ 0.25. For
N ¼ 1000, we have l ¼ 935 and aminð935Þ < 0.1eB. Thus,
as N goes to infinity, the state with the lowest energy will
approach l ¼ N, and our approximation in the main text
becomes more precise. Note that for exactly l ¼ N − 1, we
always have aminðN − 1Þ ¼ 1, and the energy for such a
state is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 3eB
p

− ðN − 1ÞΩ.

Pion condensation.—For a fixed and isolated volume
V ¼ SL with no charge allowed to flow in or out, strict
charge conservation in the comoving frame is achieved by
introducing a charge chemical potential μ, in addition to the
induced chemical potential jΩl by rotation. (For an open
volume discussion, see Ref. [16] and references therein).
For the LLL, charge conservation requires that the number
of π� in V be equal at any temperature

XN
l¼0

Z
dp
2π

1

e
1
TðE0p−lΩ−μÞ − 1

¼
XN
l¼0

Z
dp
2π

1

e
1
TðE0pþlΩþμÞ − 1

: ð16Þ

This equation is solved by inspection with μ ¼ −ðNΩ=2Þ.
Therefore, the orbital assignments l ¼ N −m and l ¼ m
for πþ and π− in the LLL will have the same occupation
number

nπþðl ¼ N −mÞ ¼ nπ−ðl ¼ mÞ

¼
Z

dp
2π

1

e
1
TðE0p−NΩ=2þlΩÞ − 1

; ð17Þ

with 0 ≤ m ≤ N. For NΩ > 2m0, simultaneous condensa-
tion occurs for m ¼ 0; i.e., πþ with l ¼ N and π− with
l ¼ 0. For ðN − 2ÞΩ > 2m0, the condensation involves
both m ¼ 0, 1. As we increase Ω such that Ω ¼ 2m0, all
m ≤ ðN=2Þwill condense; i.e., πþ with ðN=2Þ ≤ l ≤ N and
π− with 0 ≤ l ≤ ðN=2Þ, and so on.
Now, consider the rotating ground state with T ¼ 0 and

NΩ > 2m0 but ðN − 2ÞΩ < 2m0, so that only the l ¼ N
state for πþ and the l ¼ 0 state for π− condense. The energy
per unit length in the Bose-Einstein condensate (BEC)
state is

EπΩ ¼ −nðNΩ − 2m0Þ þ dNn2; ð18Þ
with the Coulomb factor

dN ≈
e2

2

Z
R

lM

2πrdr
�

1

2πr

�
2

¼ e2

4π
ln
R
a
≈
e2

8π
lnN: ð19Þ

dN characterizes the electric field energy stored between
two charged rings with radius lM ∼ 1=

ffiffiffiffiffiffi
eB

p
and charge −e

(π−), and radius R ≫ lM and chargeþe (πþ). The Coulomb
self-energy is subleading and omitted. In the ground state,
the BEC density n is fixed by minimizing the energy
density EπΩ in (18), with the result

n ¼ θðNΩ − 2m0Þ
NΩ − 2m0

2dN
: ð20Þ

The rotating πþ condensate induces a uniform magnetic
field bz that enhances the applied initial field B and back-
reacts on the formation of the charged condensates to order
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α ¼ e2=4π. Indeed, the rotating BEC of πþ at r ¼ R
generates an azimuthal current

Jθ½n� ¼ enN
m0r

jf0N j2 ≈
e2Bn
4πm0

δðr − RÞ; ð21Þ

where f0N is the LLL with angular momentum l ¼ N. The
corresponding induced magnetic field

bz½n� ¼
e2Bn
4πm0

ð22Þ

modifies the applied magnetic field to order α ¼ e2=4π
through B → Bþ bz½n�. The back-reacted LL problem
amounts to the following substitutions for m0 and N:

m2
0½n� ¼ m2

π þ eB

�
1þ e2n

4πm0

�
;

N½n� ¼ N

�
1þ e2n

4πm0

�
: ð23Þ

The back-reacted density for the π� condensates follows by
minimizing the energy per unit length:

E½Ω;n� ¼ −nðN½n�Ω − 2m0½n�Þ

þ n2e2
�

eBN
16πm2

0½n�
þ lnN½n�

8π

�
: ð24Þ

This is the analogue of Eq. (18) with dN ¼ ½e2 lnNðnÞ=8π�,
including the additional magnetic energy from the back-
reaction

πR2
b2
z

2
¼ n2e4B2R2

32πm2
0½n�

¼ e3BNn2

16πm2
0½n�

: ð25Þ

The true ground state follows by minimizing (24) with
respect to n. Both m0½n� and N½n� are observed to be
weakly dependent on the n contributions from the back-
reaction. We now explore the physical implication of
Eq. (24) in heavy ion collisions.
Pion BEC in heavy ion collisions.—Current heavy ion

collisions at collider energies are characterized by large
angular momenta l ∼ 103–105ℏ [11] and large magnetic
fields B ∼m2

π [12] in off-central collisions. While main-
taining these strong fields all the way across the collision
would be in general unexpected, even in the presence of a
strong Faraday effect, we will assume here that they are still
sizable at chemical freeze-out, where R ∼ 10 fm with
eB ∼m2

π . This would translate to a LL degeneracy N ¼
eBR2=2 ∼ ðmπ × 10 fmÞ2 ∼ 100=4 and a rotational chemi-
cal potential μN ¼ NΩ ∼ 1.25mπ . From the hadrochemistry
analysis, the pion chemical potentials at freeze-out are
typically μf ∼ 0.5mπ at RHIC, and μf ∼ 0.86mπ at the LHC
[14]. With the rotation at finite B, they would translate to
μπ ¼ μN þ 2μf ∼ 1.96mπ and 2.98mπ , respectively. Since
the threshold of the LLL for the combined π� pion energy

is 2
ffiffiffi
2

p
mπ , charge pion condensation is possible. Using (24)

at finite T; μf, the number of π� pions in the BEC is

Nπ� ¼
P∞

n¼0 ne
−1
TðLE½Ω;nL�−2nμfÞP∞

n¼0 e
−1
TðLE½Ω;nL�−2nμfÞ

: ð26Þ

For L ∼ 10 fm, eB ∼m2
π and N ≈ 25, we show in Fig. 2 the

average number of condensed π� for temperatures in the
range 0.5mπ ≤ T ≤ 1.5mπ and rotations in the range
0.04mπ ≤ Ω ≤ 0.06mπ for themost favorable casewithμf ¼
0.86mπ at the LHC. It is interesting to note that the ALICE
Collaboration has recently reported a large coherent emission
from multipion correlation studies in Pb-Pb collisions [13].
Conclusions.—The combined effects of a rotation paral-

lel to a magnetic field yields to pion condensation both in
the vacuum and at finite temperature. The πþ pions
condense at the edge, while the π− pions condense at
the center in equal amounts when charge conservation is
strictly enforced in a closed volume. Since parallel rotations
and magnetic fields can be generated in current heavy ion
collisions at collider energies, charged pion condensation
could be generated if the combined effects survive with
considerable strength in the freeze-out phase. Such effects
are likely to affect both the flow of charge particles and
their number fluctuations. This separation of charged
bosons by centrifugation in a magnetic field may also be
probed in atomic physics (trapped and cooled atoms), in
condensed matter physics (quantum Hall effect) and
possibly in compact stars (magnestars).
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