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A recent proposal equates the circuit complexity of a quantum gravity state with the gravitational action
of a certain patch of spacetime. Since Einstein’s equations follow from varying the action, it should be
possible to derive them by varying complexity. I present such a derivation for vacuum solutions of pure
Einstein gravity in three-dimensional asymptotically anti–de Sitter space. The argument relies on known
facts about holography and on properties of tensor network renormalization, an algorithm for coarse-
graining (and optimizing) tensor networks.
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Introduction.—The AdS=CFT correspondence (holo-
graphic duality) [1] is the most powerful known approach
to quantum gravity. It posits that every physical quantity in
dþ 1–dimensional gravity with asymptotically anti–de
Sitter (AdSdþ1) boundary conditions can be mapped to a
corresponding quantity in a conformal field theory living
on its asymptotic boundary (CFTd). Although the dic-
tionary relating AdS observables to CFT data has been
studied in detail, several key aspects of AdS gravity have
not yet been translated to the CFT language. The present
Letter is concerned with a conjectured translation of one
important gravitational phenomenon: that a black hole
grows deeper for an exponentially long time.
Reference [2] proposed that the said growth corresponds

to the growing circuit complexity of the quantum state in
the dual CFT. In the most recent version of the conjecture,
the depth of the black hole is quantified by the gravitational
action A inside a Wheeler–de Witt patch—the part of
spacetime that is spacelike separated from a time slice of
the asymptotic boundary. Living on that slice is an
instantaneous quantum state of the CFT. Its complexity
C is the minimal number of isometric gates required to
assemble this state starting from some simple reference
state. The conjecture in [2] is that these two quantities are
proportional: A ∝ C.
If complexity is action, it should be possible to vary

complexity and obtain Einstein’s equations. The present
Letter reports such a derivation. A key aspect of this
exercise is that I do not assume A ∝ C. Instead, I work
directly with the microscopic definition of circuit complex-
ity and, to make contact with Einstein’s equations, use

independently known facts about AdS gravity. The present
Letter therefore provides a novel check of the A ∝ C
conjecture. However, because circuit complexity is cur-
rently not well understood, the strategy of starting from a
microscopic definition of complexity is only feasible in a
restricted class of AdS geometries.
Vacuum solutions of pure Einstein gravity in 3D.—This

is a rich and varied class of spacetimes: it includes black
hole solutions [3] and horizon-free geometries related to
global pure AdS3 by large diffeomorphisms [4]. This
richness, however, is global in character; locally, all these
solutions are pure AdS3 because three-dimensional gravity
has no propagating degrees of freedom. Thus, the content
of Einstein’s equations in three-dimensional pure gravity
with a negative cosmological constant is to impose the
locally AdS3 condition. This condition can be expressed in
many ways. The most convenient formulation for my
purposes is in kinematic space [5,6].
Kinematic space is the space of pairs of points in the

boundary CFT. For the case at hand—an asymptotically
AdS3 spacetime in Lorentzian signature—the dual CFT
lives on a 1þ 1–dimensional manifold whose lightlike
coordinates will be denoted u ¼ x − t and ū ¼ xþ t.
Kinematic space is then a four-dimensional space with
coordinates u, ū, v, v̄. A function on kinematic space which
characterizes the bulk geometry is the length of the bulk
geodesic that connects the boundary points ðu; ūÞ and
ðv; v̄Þ. According to the Ryu-Takayanagi proposal [7], this
length (in Planck units) equals the entanglement entropy of
the CFT interval with endpoints at ðu; ūÞ and ðv; v̄). Using
the standard relation 3L=2GN ¼ c (L is the AdS curvature
scale and c the CFT2 central charge), we may write the
entanglement entropy as Stotðu;ū;v;v̄Þ¼Sðu;vÞþ S̄ðū; v̄Þ
with

S¼ c
12

log
½AðuÞ−AðvÞ�2
δ2A0ðuÞA0ðvÞ S̄¼ c

12
log

½BðūÞ−Bðv̄Þ�2
δ2B0ðūÞB0ðv̄Þ : ð1Þ
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These objects—the left-moving and right-moving contri-
butions to CFT entanglement entropies—obey

∂u∂v

�
−
6

c
S

�
¼ −

1

δ2
e2ð−6=cÞS ð2Þ

and an identical equation for the barred quantities [6].
These two equations are the nonlinear vacuum Einstein
equations in AdS3, translated into the boundary language.
Every real solution—parameterized by the functions AðuÞ
and BðūÞ—corresponds to a locally AdS3 geometry and to
a quantum state in the dual CFT [4]. My goal is to derive
these equations by working with the complexity of the
requisite quantum states.
States dual to locally AdS3 geometries.—These states

comprise the CFT2 ground state and its Virasoro descend-
ants. As a first step in the argument, I shall estimate the
complexity of this class of states by examining the Euclidean
path integrals which prepare them. Specifically, for the
ground state,

Ψ½ ~φðxÞ� ¼
Z

e−SCFTðφÞ
Y
x

Y
δ<z<∞

Dφðz; xÞjφðδ;xÞ¼ ~φðxÞ ð3Þ

computes the weight of a field configuration ~φðxÞ in space
while z parameterizes the Euclidean time. Wave functions of
Virasoro descendants can be computed by similar formulas,
but with ~φ specified on other cutoff surfaces instead of
z ¼ δ. Indeed, the Virasoro algebra (which corresponds to
large diffeomorphisms of AdS3) is the algebra of trans-
formations of the cutoff surface.
Equation (3) represents one preparation of the ground

state. Changing the background over which the path
integration is performed away from the cutoff surface
z ¼ δ gives rise to other preparations of the same state,
up to normalization. (Changing the cutoff surface would
take the state around the orbit of Virasoro symmetry.) This
follows from the transformation rule of the measure
Dφðz; xÞ under Weyl transformations [8],

½Dφ�e2ϕðdx2þdz2Þ ¼ eSL½ϕ�−SL½0�½Dφ�ðdx2þdz2Þ: ð4Þ
Here SL½ϕ� is the Liouville action

SL ¼ c
24π

Z
dx

Z
∞

δ
dz½ð∂xϕÞ2 þ ð∂zϕÞ2 þ δ−2e2ϕ� ð5Þ

for a field ϕðz; xÞ, which sets the Weyl frame of the
Euclidean space

ds2 ¼ e2ϕðdz2 þ dx2Þ≡ gabdxadxb ð6Þ
over which the path integration is carried out. The coupling
constant in (5) can be reabsorbed into a shift of ϕ. I will
discuss the merits of setting it to δ−2 below.
My strategy is to consider the Euclidean path integration

performed over the background (6) as one preparation of
the quantum state. Every choice of ϕðz; xÞ which satisfies
an appropriate boundary condition gives rise to one such
preparation. In the case of the ground state, the boundary

condition is ϕðδ; xÞ ¼ 0; for other states, we will also set
the boundary condition ϕ ¼ 0, but on other curves through
x-z space. The objective is to characterize the complexity of
the path integral C½ϕ� as a functional of ϕðz; xÞ. Varying
such a functional will then identify the minimally complex
preparation of the state.
Reference [9] proposed that the complexity of a path

integration carried over background (6) is the Liouville
action shown in Eq. (5). Because the justification of that
claim was mostly heuristic, here I would like to offer an
independent argument for why C½ϕ� ∝ SL½ϕ�. To do so, I
will consider the action of Weyl transformations on a
discretized Euclidean path integral presented in the form of
a tensor network. Recasting the problem in the language of
tensor networks will have an added benefit later on.
Weyl transformations of discretized path integrals.—

Before applying a Weyl transformation, the path integral (3)
over a flat half-plane iswell approximated as a tensor network
shown in Fig. 1(a). We shall apply a discrete Weyl trans-
formation to the lattice inhabited by these tensors. Following
[10], this will be done through iterative applications of the
tensor network renormalization (TNR) algorithm [11].
A single application of TNR to the discrete path integral

on a regular lattice is shown in Fig. 1(b). The output is a
uniform network that is outwardly identical to the input
network except that the density of the tensors becomes
diluted by a factor of ð1=2Þ2. As a consequence of
conformal symmetry, the tensors comprising the output
network are the same as the tensors in the input, up to
inherent ambiguities such as the choice of basis on each leg.
Although the coarse-graining effected by TNR is an
approximation, the difference between the states prepared
by the initial and the diluted network can be made small,
controlled by the bond dimension of the tensors. In
applications to holography we contemplate networks with
large bond dimensions, perhaps of order ec, such that the
error incurred by TNR is negligible.

FIG. 1. (a) A discretized Euclidean path integral can be repre-
sented as a regular lattice of identical tensors with nearest-neighbor
contractions. (b) TNR approximates it with a coarser lattice;
interfaces between the finer and coarser lattices are isometric layers
(highlighted). (c),(d) For a piecewise constant ϕðz; xÞ on the lattice
(c), the corresponding conformal transformation can be imple-
mented with iterative applications of TNR (d).
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While TNR dilutes the interior tensors in the network, the
density of external legs—the legs which span the Hilbert
space where the state under construction lives—remains
unaffected. Mediating between the diluted interior network
and the undiluted external legs is an extra isometric layer of
tensors whose detailed form is determined by the TNR
algorithm. Its purpose is to embed the coarse-grained state
prepared by the diluted network in the original, fine-grained
Hilbert space. An analogous isometric layer will form on
every interface separating regions of the network that have
been coarse-grained to varying degrees; see Fig. 1(b).
We are now ready to apply a Weyl rescaling to a discrete

path integral. If TNR is to emulate it, ϕðz; xÞ must be a
piecewise constant function on the lattice which jumps by
multiples of log 2. An example discrete profile of ϕðz; xÞ is
displayed in Fig. 1(c); recall the boundary condition ϕ ¼ 0.
I shall apply TNR in steps. In the kth step, I hold the legs
across which ϕðz; xÞ jumps from −ðk − 1Þ log 2 to −k log 2
fixed and coarse grain the discrete path integral everywhere
above. The region where ϕðz; xÞ ¼ −k log 2will eventually
become diluted by a factor of 2−k ¼ eϕ. An example
network obtained from this procedure is shown in
Fig. 1(d). For more details on using TNR to Weyl transform
path integrals, see [10].
The complexity of the transformed path integral.—After

the Weyl rescaling, the discrete path integral comprises
two types of tensors. The first are the same tensors, which
made up the initial, untransformed path integral—except
that the local density of such tensors at ðz; xÞ is e2ϕðz;xÞ. To
account for their complexity, C½ϕ� should include a term
proportional to

R
dxdze2ϕ.

The second component is the isometric layers. Because
such layers follow curves where the discretized ϕðz; xÞ
jumps, accounting for their complexity will require adding
to C½ϕ� a term proportional to
Z

dxdz
ffiffiffi
g

p
gab∂aϕ∂bϕ ¼

Z
dxdz½ð∂xϕÞ2 þ ð∂zϕÞ2� ð7Þ

This is the lowest-order, rotationally symmetric expression

that is even in ∇⃗ϕ. To see that no extra powers of eϕ are
necessary, observe that a constant physical density of
isometric tensors (gab∂aϕ∂bϕ ¼ const) should correspond
to a density of isometries per coordinate unit length of
isometric layer that goes as eϕ. This is reproduced by

ffiffiffi
g

p
(density per unit coordinate area) times the coordinate
thickness of a layer, which goes as e−ϕ.
Assuming the average complexity of isometric layers

(per unit area) is greater than the complexity of the tensors
of the first type, accounting for the isometries demands
including in C½ϕ� a positive multiple of (7). [If the
isometries were less complex than the initial tensors, they
would require supplementing

R
dxdze2ϕ with a negative

multiple of (7).] Combining both terms, we get C½ϕ� ∝
SL½ϕ�. For now, their relative coefficient can be readjusted
by a shift of ϕ, but the choice in (5) will prove meaningful
and convenient below.

The optimal path integral: State complexity.—To find the
complexity of the state, we seek the least complex circuit
that prepares the state. Setting the variation of expression
(5) to zero, we obtain the equation of motion

4∂w∂w̄ϕ ¼ δ−2e2ϕ; ð8Þ
where w ¼ xþ iz and w̄ ¼ x − iz. Evaluating “action” (5)
on a solution of (8) yields the complexity of a quantum
state, which is specified by the boundary condition of ϕ.
For the simplest boundary condition ϕðδ; xÞ ¼ 0 that
selects the CFT ground state, we get ϕ ¼ − logðz=δÞ.
The remaining task is to connect Eq. (8) to Eq. (2).

Before doing so, let us pause for a useful observation.
The optimal network is MERA.—In discrete settings,

Eq. (8) demands a “greedy” coarse-graining: a sequence of
consecutive isometric maps, without retaining any diluted
tensors from the initial path integral. Heuristically, keeping
the nonisometric tensors has no advantage: they cost
complexity but do not expedite preparing the state because
the same isometries must still be applied with or without
them. The optimal network, shown in Fig. 2, is known as
multiscale entanglement renormalization ansatz (MERA)
[12]; the fact that “greedy” iterations of TNR produce
MERA was first observed in [13]. The present argument
suggests that MERA or a close analogue is the most
efficient circuit for preparing the CFT2 ground state and
Virasoro descendants. In the continuum, a likely candidate
for optimality is cMERA [14], its continuous version.
Identifying MERA as the most efficient circuit reproduces
the intuitions of [2,9,15].
One bonus of the preceding discussion is that MERA

is made up of unitary and isometric tensors. A possible
objection to quantifying state complexity using Euclidean
path integrals is that the latter may not be prepared by a
sequence of isometric gates. In contrast, most discussions
of circuit complexity assume the elementary gates comprise
only unitaries and isometries, which seems to disallow the
tensor networks shown in Fig. 1. Since MERA involves
only unitaries and isometries, this objection does not apply.
If MERA is optimal in a larger class of circuits that includes
Euclidean path integrals then it is also optimal in the
narrower class of isometric circuits.

FIG. 2. The optimal network (MERA) consists entirely of
isometric layers. The entanglement entropy of interval ðu; vÞ
can be approximated by counting the isometric layers through
which the “exclusive causal cone” of the interval passes. The
layers are indexed by ϕ=ð− log 2Þ.
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A more serious danger is that TNR is not versatile
enough to study state complexity. It is possible the optimal
circuit cannot be reached by applying TNR to the path
integral. The only response to this valid objection is that
proving optimality in quantum field theory is nearly
impossible and will remain so in the foreseeable future,
so a pedantic insistence on verifying optimality would
postpone any practical inspection of circuit complexity ad
kalendas Graecas. Having duly noted the logical possibil-
ity that MERA is not optimal, I will proceed.
The Lorentzian geometry of the ground state MERA.—

The conclusion thus far is that the optimal circuit (MERA)
lives on a Euclidean geometry with a metric

ds2 ¼ −
4δ2A0ðwÞB0ðw̄Þ
½AðwÞ − Bðw̄Þ�2 dwdw̄: ð9Þ

The factor in front of dwdw̄ is a general solution of Eq. (8)
for e2ϕ. However, the MERA network is also known to have
a causal structure (see Fig. 2), which is a consequence of
the isometric and unitary character of its tensors [12,16,17].
This fact, and the ensuing manipulations on ϕðz; xÞ, are
reviewed and explained in the Supplemental Material [18].
How can we use Eq. (9) to understand the Lorentzian
manifold that captures MERA’s causal structure?
It is most instructive to do so first for the ground state, for

which AðwÞ ¼ w and Bðw̄Þ ¼ w̄. Equation (9) now reads

ds2 ¼ −
4δ2dwdw̄
ðw − w̄Þ2 ¼ dx2 þ dz2

ðz=δÞ2 ð10Þ

and ϕðz; xÞ ¼ − logðz=δÞ. Recalling the way TNR pro-
duced MERA, we recognize that every successive jump of
ϕ by log 2 marks one additional isometric layer. The causal
structure of MERA, which tracks which tensors impact the
state on which external legs, indicates that a tensor at x0 and
z ¼ 2kδ, i.e., on the kth layer of MERA, impacts the state
on legs x0 − 2kδ through x0 þ 2kδ. Thus, the lightlike
directions on the Lorentzian manifold underlying MERA
are simply x� z. Meanwhile, its volume form (in the
discrete language, the number of tensors) is the same as in
Eq. (10). Altogether, we conclude that the Lorentzian
geometry of MERA is encapsulated by

ds2 ¼ ð−dx2 þ dz2Þ=ðz=δÞ2: ð11Þ
This reasoning was spelled out before, e.g., in [16,17]; see
also [15] for a comparison of how the Lorentzian and
Euclidean geometries of MERA can be embedded in AdS3.
Note that we could have obtained metric (11) directly
from (9) by continuing x → ix and

w ¼ xþ iz → iðxþ zÞ≡ iv;

w̄ ¼ x − iz → iðx − zÞ≡ iu;

so that Eq. (10) becomes −4δ2dvdu=ðv − uÞ2.
Ground state ϕ is minus entanglement entropy.—In

holographic interpretations of MERA, such as [17,20],
one assumes that the entanglement entropy of an interval

can be estimated by counting the legs which cross its
“exclusive causal cone” (see Fig. 2). For an interval
ðu ¼ x0 − 2kδ; v ¼ x0 þ 2kδÞ, this number is 2k—two legs
(on left and right) for each MERA layer from the UV up to
the top of the causal cone. In terms of the light-cone
coordinates u and v, the entanglement entropy of interval
ðu; vÞ therefore equals

Stotðu; u; v; vÞ
#c

¼ −
2ϕðw ¼ iv; w̄ ¼ iuÞ

log 2
: ð12Þ

Note that the entanglement entropies of ð2δÞ-sized intervals
correctly vanish; if we had reabsorbed the coupling con-
stant in (5) into a shift of ϕ, we would have had to undo the
shift in (13) with the same physical outcome. Quantity #c is
the additive contribution to the entanglement entropy from
every line crossed by a minimal cut; the notation empha-
sizes that it is an Oð1Þ multiple of the central charge. To
reconcile Eq. (1) with ϕðz; xÞ ¼ − logðz=δÞ for the vacuum,
the constant # must be ðlog 2Þ=6, which yields, for Sðu; vÞ
and S̄ðū; v̄Þ,

−
6

c
Sðu; vÞ ¼ ϕðw ¼ iv; w̄ ¼ iuÞ;

−
6

c
S̄ð−v̄;−ūÞ ¼ ϕðw ¼ −iū; w̄ ¼ −iv̄Þ: ð13Þ

The step from (12) to (13) is motivated by considering both
analytic continuations x → �ix of ϕðw; w̄Þ and noting that
they transform into one another under spatial reversal, as do
Sðu; vÞ ↔ S̄ð−v̄;−ūÞ. Written in terms of u and v, Eq. (8)
is synonymous with Eq. (2) and its barred counterpart.
Time reversal–invariant Virasoro descendants.—

Consider general functions present in (9) as coordinate
changes [W ¼ AðwÞ and W̄ ¼ Bðw̄Þ] and repeat the argu-
ment. Metric (9) reduces to the canonical form (10) with
w; w̄ → W; W̄ and ϕ ¼ − log½ImðWÞ=δ� again indexes con-
secutive layers of the optimal (MERA) network. Its causal
structure is captured by continuing W → iV ≡ AðivÞ,
which defines the Lorentzian metric

ds2 ¼ 4δ2A0ðivÞB0ðiuÞdudv
½AðivÞ − BðiuÞ�2 ¼ −e2ϕðw¼iv;w̄¼iuÞdudv: ð14Þ

If identification (13) still holds, Eq. (8) that ϕðw; w̄Þ obeys
will again reduce to Eq. (2).
There are several ways to confirm identification (13).

Combining it with the equation of motion (8), we see that
the Lorentzian geometry of MERA is

−e2ϕðw¼iv;w̄¼iuÞdudv¼ð−24δ2=cÞ∂u∂vSðu;vÞdudv; ð15Þ

i.e., kinematic space [5,6]. The same conclusion was
reached in [17] for independent reasons, which involved
a tensor network interpretation of the differential entropy
formula [21]. Yet another argument observes that both sides
of (15) are reparametrization invariant, so if (13) holds in
the W, W̄ coordinates, it must hold in w, w̄ too.
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General Virasoro descendants.—This reasoning applies
to time reversal–invariant states, which can be prepared
by real Euclidean path integrals. To extend it to arbitrary
Virasoro descendants, one might complexify metric (6) by
declaring w and w̄ to be independent,

w ¼ xR − itR and w̄ ¼ xL − itL: ð16Þ
If ϕðw; w̄Þ still satisfies Eq. (8), identification (13) would
again imply Eq. (2). But at present TNR cannot be used to
justify Eq. (8) because its application to complexified path
integrals remains unexplored.
Future directions.—What enabled the characterization of

the complexity of the CFT2 ground state (and its Virasoro
descendants) was, in essence, the fact that it is completely
determined by the conformal anomaly. It should be possible
to repeat this argument for warped CFTs [22]. I hope to
report such an analysis in the near future.
After that, the next goal should be to introduce bulkmatter.

Other than a point particle (a conical defect), which can be
done along the lines of [9], thiswill likely require qualitatively
new ingredients. Another important goal is higher dimen-
sions. If we consider Weyl transformations of the path
integral, an identical argument suggests a “complexity action”

C½ϕ� ∝
Z

ddx½eðd−2Þϕð∂ϕÞ2 þ δ−2edϕ�; ð17Þ

an expressionpreviously conjectured in [9].We recognize this
complexity functional as pitting curvature against volume,
with the curvature term quantifying the complexity cost of
coarse-graining tensors. The optimal geometry would again
be amanifold of constant curvaturewhosemagnitude is set by
the cutoff.
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