
 

Gravitational Waves from Oscillons with Cuspy Potentials

Jing Liu,1,2,* Zong-Kuan Guo,1,2,† Rong-Gen Cai,1,2,‡ and Gary Shiu3,4,§
1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences,

P.O. Box 2735, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China

3Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
4International College, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 2 August 2017; revised manuscript received 24 November 2017; published 19 January 2018)

We study the production of gravitational waves during oscillations of the inflaton around the minimum
of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon
formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The
discovery of such a double-peak spectrum could test the underlying inflationary physics.
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Introduction.—Gravitational waves (GWs) play an
important role in the context of inflationary cosmology.
A stochastic background of GWs, produced during infla-
tion and subsequent preheating or reheating after inflation,
carries useful information about the inflationary dynamics
and inflaton decay (see Ref. [1] for a recent review).
Detecting such a stochastic background of GWs, whether
directly or indirectly, can provide us with a unique
opportunity to test theories of inflation.
During inflation, quantum fluctuations of the tensor

modes of the spacetime metric were stretched by the
accelerated expansion of the Universe, and were then nearly
frozen on super-Hubble scales. Since these GWs can result
in B-mode polarization of the cosmic microwave back-
ground (CMB) anisotropies, their spectrum is, in principle,
measurable by CMB polarization experiments. Current
CMB data alone already put an upper bound on the
tensor-to-scalar ratio r < 0.09 at 95% confidence level
[2], and when combined with the constraints on the scalar
spectral index, have been effective in discriminating infla-
tionary models. For example, the cubic and quartic potentials
are strongly disfavored, and the quadratic potential is
moderately disfavored by the Planck 2015 data [3], while
axion monodromy inflation with a linear potential [4] or
fractional powers [5] are compatible with the current Planck
results. Further advances in axion monodromy inflation have
suggested potentials with even more possible powers [6,7].
Moreover, it has recently been shown that stringy effects can
lower the power of a quadratic axion monodromy potential
to less than linear [8]. Thus, axion monodromy inflation
represents an interesting class of large field inflationary
models that are compatible with data.
Besides vacuum fluctuations during inflation, another

source of GWs is parametric resonance during preheating
[9]. During preheating after inflation, the Fourier modes
of a scalar matter field χ coupled to the inflaton grow

exponentially by parametric resonance, driven by the
oscillating inflaton. The resonant modes are quickly
pumped up to a large amplitude. Such highly pumped
modes correspond to large, time dependent density inho-
mogeneities in position space, ensuring that the matter
distribution has a nontrivial quadrupole moment, which can
source a significant spectrum of GWs [10]. The present
peak frequency of such GWs is proportional to the energy
scale of inflation [11], while the present amplitude of GWs
is independent of the energy scale of inflation [12]. In
hybrid inflation the stochastic background produced during
preheating is expected to be directly detected by future GW
detectors [13].
In this Letter, we shall investigate the production of GWs

during oscillations of the inflaton after inflation with a
cuspy potential

VðϕÞ ¼ λM4−p
pl jϕjp; ð1Þ

with p ¼ 1; 2=3; 2=5, and Mpl ≡ ð8πGÞ−1=2 is the reduced
Planck mass. In string theory, axion monodromy can be
introduced by space-filling wrapped branes leading to a
linear potential [4]. Inflationary potentials with powers of
2=3 and 2=5 arise in compactifications on manifolds with
metric flux such as Nil manifolds which contain tori twisted
over circles [5]. More generally, monodromy generated by
fluxes can lead to potentials with more varieties of power
[6,7]. Here we hasten to add that the powers of these
potentials are expected only at large field values, due to the
coupling of the inflaton to high scale physics. At the end of
inflation, i.e., for small ϕ, these potentials for axion
monodromy become quadratic. Nonetheless, cuspy poten-
tials can arise in other inflationary contexts, e.g., through
nonstandard kinetic terms or as a result of integrating out
the dynamics of other fields that couple to the inflaton.
Thus, we use these specific potentials as benchmarks to
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illustrate the novel GW signatures that can arise when the
potential has a cuspy behavior at the end of inflation.
Assuming the potential in Eq. (1) applies to both the
inflationary era and at the end of inflation, the value of λ in
this simple class of models can be fixed by the estimated
amplitude of scalar perturbations from the CMB data. For
powers of p ¼ 1; 2=3; 2=5, λ ≈ 3; 4; 5 × 10−10, the pre-
dicted scalar spectral index ns ≈ 0.970; 0.973; 0.976, and
the predicted tensor-to-scalar ratio r ≈ 0.08; 0.05; 0.03,
respectively, assuming the number of e folds N ¼ 50.
These predictions are in agreement with the recent CMB
data. In the reheating scenario, the inflaton ϕ oscillates near
the minimum of its potential after inflation and decays into
elementary particles. However, due to the cusp of the
potential, the oscillating behavior of the inflaton is very
different from that of smooth potentials like ϕ2 and ϕ4.
It has recently been shown that an efficient parametric
resonance can occur during preheating for an inflaton
potential of the form of Eq. (1) with 0 < p ≤ 2, if the
inflaton is coupled to a scalar matter field χ via an
interaction term ϕ2χ2 [14]. However, the production of
GWs has not been studied to our knowledge. In this Letter,
we are interested in the production of GWs during
oscillations of the inflaton after inflation with cuspy
potentials. We find that the nonsmooth oscillations can
trigger amplification of fluctuations of the inflaton itself at
the moment when ϕðtÞ ¼ 0, so that oscillons copiously
form after inflation. As in the models with a symmetric
smooth potential [15] and an asymmetric smooth potential
[16], the oscillon formation in the models with cuspy
potentials sources a stochastic background of GWs, on
which the characteristic size of the oscillons is imprinted.
Interestingly, these cuspy potentials result in a character-
istic energy spectrum of GWs with double peaks, which
can be distinguished from smooth potentials by probing the
shape of the energy spectrum of GWs.
Model.—GWs are described by the transverse-traceless

gauge-invariant tensor perturbation hij in a Friedmann-
Robertson-Walker (FRW) metric,

ds2 ¼ −dt2 þ a2ðtÞðδij þ hijÞdxidxj: ð2Þ

The perturbed Einstein equation reads

ḧij þ 3H _hij −
1

a2
∇2hij ¼

2

M2
pla

2
ΠTT

ij ; ð3Þ

where ΠTT
ij is the transverse-traceless projection of the

anisotropic stress tensor Tij. In our model we assume that
the inflaton is weakly coupled to other fields during
preheating. GWs are sourced by the inflaton ϕ, i.e.,
ΠTT

ij ¼ ð∂iϕ∂jϕÞTT. The energy density of GWs is

ρGW ¼ M2
pl

4
h _hij _hiji; ð4Þ

where h…i denotes a spatial average over the volume.
It is commonly parametrized by the dimensionless
density parameter per logarithmic frequency interval,
ΩGW ¼ dρGW=d ln k=ρc, where ρc is the critical density
of the Universe. The energy density spectrum of the
inflaton is defined as

k3ρk ¼
1

2
k3ðj∂τφkj2 þ ω2

kjφkj2Þ; ð5Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2hV 00i − ∂2

τa=a
p

, φk are the Fourier
modes of aϕ, and τ is the conformal time.
To understand oscillon formation during oscillations of

the inflaton after inflation with a cuspy potential, we now
investigate the evolution behavior of inflaton fluctuations.
To first order, the equation of motion for the Fourier modes
of fluctuations of the inflaton ϕ is

δϕ̈k þ 3Hδ _ϕk þ
�
k2

a2
þ V 00ðϕÞ

�
δϕk ¼ 0: ð6Þ

To solve this equation, we neglect the expansion of the
Universe for the moment; thus, the friction term drops out
of the equation of motion. Moreover, since we are inter-
ested in large-scale modes, the k2 term can be dropped. The
equation becomes

δϕ̈k þ V 00ðϕÞδϕk ¼ 0: ð7Þ

For illustrative purposes, in what follows let us consider
the linear potential. Since the inflaton potential VðϕÞ ¼
λM3

pljϕj has a cusp at ϕ ¼ 0, its derivative with respect to ϕ
is a step function and its second order derivative is a delta
function V 00ðϕÞ ¼ 2λM3

plδðϕÞ. We focus on the evolution
behavior of the δϕk modes near the point ϕðtÞ ¼ 0. It is
convenient to define t such that ϕðt ¼ 0Þ ¼ 0. The solution
to the equation of motion for the inflaton is ϕðtÞ ¼ j _ϕmjtþ
λM3

plt
2=2 when t < 0 and ϕðtÞ ¼ j _ϕmjt − λM3

plt
2=2 when

t > 0, where _ϕm is the maximum value of _ϕ at t ¼ 0. Since
ϕðtÞ ≈ j _ϕmjt is a good approximation in a small vicinity
of ϕ ¼ 0, we find δ _ϕkðt ¼ 0þÞ − δ _ϕkðt ¼ 0−Þ ¼
−2λM3

plδϕkðt ¼ 0Þ=j _ϕmj, which implies that δ _ϕk jumps
suddenly when ϕ crosses the cusp of the potential. Such
periodic jumps of δ _ϕk result in periodic, rapid increases of
the energy density ρk. We show the time evolution of the
energy density for a linear potential (orange) in an
expanding Universe in Fig. 1. In the cases of p ¼ 2=3
and p ¼ 2=5, jV 0ðϕÞj becomes infinite when jϕj tends to
zero. To avoid this singularity, the potential with a cutoff
jϕj > Oð10−3Þ is adopted in our numerical calculations.
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We also show the time evolution of the energy density for
the ϕ2=3 potential (blue) and ϕ2=5 potential (green) in Fig. 1.
Similar to the linear potential, the energy density suddenly
increases near the points at which ϕðtÞ ¼ 0. However, the
sudden increase is followed by a sudden decrease near
ϕðtÞ ¼ 0 after several oscillations of the field ϕ. The energy
density always increases after each oscillation of the field
ϕ. We have checked that the increase in energy density is
independent of the choice of the cutoff. As a result, oscillon
formation occurs when the inflaton oscillates near the
minimum of its potential, which sources a stochastic
background of GWs.
Simulation results.—Using a modified version of

LATTICEEASY [17], we simulate the production of GWs
during preheating in the models (1) with cuspy potentials.
LATTICEEASY has been developed for more generally
calculating the evolution of interacting scalar fields in an
expanding Universe. The spectral method can directly solve
the GW equation (3) in Fourier space [18]. Actually, one
can first evolve the tensor perturbations in configuration
space and then apply the transverse-traceless projector to
the real physical hij in Fourier space [19]. Another method
is based on the Green’s functions in Fourier space to
calculate numerically the energy spectrum of GWs gen-
erated well inside the horizon [20]. In our lattice simu-
lations we adopt the configuration-space method for
solving the following evolution equation of the tensor
perturbations

üij þ 3H _uij −
1

a2
∇2uij ¼

2

M2
pla

2
Tij: ð8Þ

Therefore, the transverse-traceless tensor perturbations can
be written as hijðt;kÞ¼Λij;lmðk̂Þulmðt;kÞ, where Λij;lmðk̂Þ
is the transverse-traceless projection operator and ulmðt;kÞ
is the Fourier transform of the solution to the Eq. (8).
The energy density of GWs can be expressed in terms
of uij as

ρGW ¼ M2
pl

4L3

Z
d3kΛij;lmðk̂Þ _uijðt;kÞ _u�lmðt;kÞ: ð9Þ

We perform three-dimensional lattice simulations with
2563 points in a box with periodic boundary conditions
assuming λ ¼ 1.26 × 10−12 in the linear potential model.
We set the initial values of the inflaton, its derivative,
and the scale factor as ϕi ¼ 0.75Mpl, _ϕi ¼ 6.8 × 10−4M2

pl,
and ai ¼ 1. The inflaton fluctuations and its derivative are
initialized by quantum vacuum fluctuations, while the
tensor fluctuation and its derivative are initialized as zero.
We stop the simulation when the energy spectrum of GWs
does not grow significantly. We assume that reheating ends
at the end of the simulation. After that, the Universe enters
into the radiation-dominated era. The energy spectrum and
its frequency at the end of simulations are converted to the
present values. Figure 2 shows the time evolution of
the energy density as a function of position on a two-
dimensional slice through the simulation from aðtÞ ¼ 6.13
(top, left), to 6.81 (top, right), to 7.43 (bottom, left), and
13.4 (bottom, right) in the linear potential model. We can
see that at the beginning, oscillons copiously form and then
decay during oscillations of the inflaton. In this model,
the rapid growth of oscillons results in the production of
GWs with ΩGWh2 ∼ 2 × 10−9 today. Our lattice simulation
results show that there appear two peaks in the energy
spectrum of GWs, a feature very distinct from that of other
models. Therefore, our model can be distinguished from
the production of GWs during preheating by future GW
detectors. While this Letter was in preparation, a phenom-
enological study of GWs produced from preheating with a
time dependent resonance parameter qðtÞ was recently
undertaken [21]. For some choices of qðtÞ, one also finds a
GW spectrum with multiple peaks due to nonlinear effects.
The double peak of GWs in Ref. [21] arises due to the
parametric resonance in the preheating phase, while in our
work, it is not the case, the double peak is due to the
copious oscillon formation triggered by the cusp in the
potential.
The evolution of the spectrum goes through two different

stages, the linear growth stage and nonlinear growth stage.
In the first stage, as shown in Fig. 3, the small-k modes of
the field ϕ exponentially grow due to the cusp of the
potential until the turning point aðtÞ ¼ 7.30. The linear
growth is more efficient than those driven by the symmetric
potential [15] and asymmetric potential [16]. This leads to
the left peak in the energy spectrum of GWs, which is
characteristic of the cuspy potential. In the second stage,
from Fig. 3 we see that the small-kmodes begin to drop and
the large-k modes continue to grow. It implies that the
energy flows from the small-k modes to the large-k modes,
as discussed in detail in Ref. [19]. This leads to the right
peak in the energy spectrum of GWs.
Moreover, from the lattice simulations of preheating in

the models (1) with p ¼ 2=3 and p ¼ 2=5, we find that the

FIG. 1. Evolutions of ρk for cuspy potentials with p ¼ 1 and
k ¼ 1.0 × 10−3Mpl (orange), p ¼ 2=3 and k ¼ 1.0 × 10−5Mpl
(blue), p ¼ 2=5 and k ¼ 1.3 × 10−4Mpl (green), respectively.
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energy spectra of GWs peak at aroundΩGWh2 ∼ 1.2 × 10−9

andΩGWh2 ∼ 4 × 10−10, respectively, which are lower than
the one in the linear potential model.
In our analysis, we have neglected the interactions

between the inflaton ϕ and other matter fields. If the inflaton
is coupled to a matter field χ, broad parametric resonance

leads effectively to a fast growth of the fluctuations of χ [14].
However, our numerical simulations confirm that the growth
of the inflaton fluctuations themselves triggered by the cusp
in its potential is more effective than that of the field χ by
parametric resonance. Therefore, GWs are sourced mainly
by the inflaton fluctuations, even if a parametric resonance
for the field χ occurs in this model.
Observational implications.—As found in Refs. [12,13],

the peak amplitude of the energy spectrum of GWs needs
not depend on the energy scale of inflation, while the peak
frequency scales inversely with the energy scale of infla-
tion. In the single-field slow-roll inflationary scenario, if
λ ≈ 3 × 10−10 is fixed by the amplitude of the primordial
curvature perturbation As ¼ 2.2 × 10−9 [3], the peak fre-
quency of GWs today is fixed to be f ∼ 109 Hz, many
orders of magnitude beyond the frequencies that can be
reached by current GW detection experiments.
If the model parameter λ is not fixed by the amplitude of

the primordial curvature perturbation, the sensitivity of
advanced LIGO (aLIGO) is expected to be significantly
improved, which allows us to possibly observe GWs
produced during oscillations of inflaton after inflation.

FIG. 2. Energy density ρ on a two-dimensional slice through the simulation, when aðtÞ ¼ 6.13 (top, left), 6.81 (top, right), 7.43
(bottom, left), and 13.4 (bottom, right), in the linear potential model.

FIG. 3. Evolution of the energy density spectrum of the field ϕ
for the linear potential. The yellow line corresponds to a turning
point aðtÞ ¼ 7.30.
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For example, in the hybrid inflationary scenario [22], since
ϕ is not necessarily the inflaton itself, λ becomes essentially
a free parameter. In this case we have plotted in Fig. 4 the
present-day energy spectra of GWs produced during
oscillon formation in the linear potential model (1) with
λ ¼ 9.7 × 10−44 (blue) and λ ¼ 1.3 × 10−40 (green), the
peaks of which lie above the expected sensitivity curve of
the fifth observing run (O5) of the aLIGO-Virgo detector
network [23]. Figure 4 shows that there are two peaks in the
energy spectrum of GWs, which differ from other spectra of
GWs produced during preheating. A detection of the
second peak may require corroboration from other GW
detectors such as the Big Bang Observatory.
To summarize, we have studied the production of GWs

during oscillon formation after inflation with cuspy poten-
tials. At the end of inflation, oscillon formation can be
triggered by the particular oscillations of the inflaton
around the minimum of its potential, which sources a
characteristic double-peak spectrum of GWs. The discov-
ery of such a background would open a new observational
window into inflationary physics.
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