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The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to
the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic
censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study
massless scalar fields in the exterior of Reissner–Nordström–de Sitter black holes. Their decay rates are
governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes:
one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose
existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates
for near-extremally charged black holes and which is also present in asymptotically flat spacetimes.
The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description
of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal
regime.
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Introduction.—The study of the decay of small pertur-
bations has a long history in general relativity (GR).
An increasingly precise knowledge of the quantitative
form of the decay of fluctuations is required to advance
our understanding of gravitation, from the interpretation of
gravitational wave data to the study of fundamental ques-
tions like the deterministic character of GR.
The well-known appearance of Cauchy horizons in

astrophysically relevant solutions of Einstein’s equations
signals a potential breakdown of determinism within
GR—the future history of any observer that crosses such a
horizon cannot be determined using the Einstein field
equations and the initial data. Nonetheless, in the context
of black hole (BH) spacetimes, one expects that perturbations
of the exterior region might be infinitely amplified by a
blueshift mechanism, turning a Cauchy horizon in the BH
interior into a singularity (terminal boundary) beyond which
the field equations cease to make sense. Penrose’s Strong
Cosmic Censorship (SCC) conjecture substantiates this
expectation.
On the other hand, astrophysical BHs are expected to be

stable due to perturbation damping mechanisms acting in
the exterior region. Therefore, whether or not SCC holds
true hinges to a large extent on a delicate competition
between the decay of perturbations in the exterior region
and their (blueshift) amplification in the BH interior. For
concreteness, let Φ be a linear scalar perturbation (i.e., a

solution of the wave equation) on a fixed subextremal
Reissner-Nordström (RN), asymptotically flat or de Sitter
(dS) BH, with cosmological constant Λ ≥ 0. Regardless of
the sign of Λ, in standard coordinates, the blueshift effect
leads to an exponential divergence governed by the surface
gravity of the Cauchy horizon κ−.
Now the decay of perturbations depends crucially on the

sign of Λ. For Λ ¼ 0, Φ satisfies an inverse power law
decay [1–3] which is expected to be sufficient to stabilize
the BH while weak enough to be outweighed by the
blueshift amplification. Various results [4–8] then suggest
that, in this case, the Cauchy horizon will become, upon
perturbation, a mass inflation singularity, strong enough to
impose the breakdown of the field equations.
For Λ > 0, the situation changes dramatically. In fact, it

has been shown rigorously that, for some Φ0 ∈ C [9–12],

jΦ −Φ0j ≤ Ce−αt; ð1Þ
with α the spectral gap, i.e., the size of the quasinormal
mode (QNM)-free strip below the real axis. Moreover, this
result also holds for nonlinear coupled gravitational and
electromagnetic perturbations of Kerr–Newman–dS (with
small angular momentum) [13,14]. This is alarming as the
exponential decay of perturbations might now be enough
to counterbalance the blueshift amplification. As a conse-
quence the fate of the Cauchy horizon now depends on the
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relation between α and κ−. Will it still, upon perturbation,
become a “strong enough” singularity in order to uphold
SCC?
A convenient way to measure the strength of such a

(Cauchy horizon) singularity is in terms of the regularity of
the spacetime metric extensions it allows [15–17]. For
instance, mass inflation is related to inextendibility in
(the Sobolev space) H1 which turns out to be enough to
guarantee the nonexistence of extensions as (weak) sol-
utions of the Einstein equations [18], i.e., the complete
breakdown of the field equations.
As a proxy for extendibility of the metric itself, we will

focus on the extendibility of a linear scalar perturbation.
On a fixed RNdS, the results in Ref. [19] (compare with
Ref. [20]) show that Φ extends to the Cauchy horizon with
regularity at least

H1=2þβ; β≡ α=κ−: ð2Þ
Now the nonlinear analysis of Refs. [13,14,21,22] suggests
that themetricwill have similar extendibility properties as the
scalar field. It is then tempting to conjecture, as was done
before in Refs. [6,23,24]: if there exists a parameter range for
which β > 1=2 then the corresponding (cosmological) BH
spacetimes should be extendible beyond the Cauchy horizon
with metric inH1. Even more strikingly, one may be able to
realize some of the previous extensions as weak solutions
of the Einstein equations. This would correspond to a severe
failure of SCC, in the presence of a positive cosmological
constant. (The construction of bounded Hawking mass
solutions of the Einstein-Maxwell-scalar field system with
a cosmological constant allowing for H1 extensions beyond
the Cauchy horizon was carried out in [21]; these results use
the stronger requirement β > 7=9, but we expect β > 1=2 to
be sharp).
It is also important to note that if β is allowed to exceed

unity then (by Sobolev embedding) the scalar field extends
in C1; the coupling to gravity should then lead to the
existence of solutions with bounded Ricci curvature.
Moreover, for spherically symmetric self-gravitating scalar
fields, the control of both the Hawking mass and the
gradient of the field is enough to control the Kretschmann
scalar [16]. We will, henceforth, relate β < 1 to the blow up
of curvature components.
At this moment, to understand the severeness of the

consequences of the previous discussion, what we are most
lacking is an understanding of how the decay rate of
perturbations α is related to κ−. Since α is the spectral gap,
this can be achieved by the computation of the QNMs of
RNdS BHs. The purpose of this work is to perform a
comprehensive study of such modes and to discuss possible
implications for SCC by determining β throughout the
parameter space of RNdS spacetimes.
Setting.—We focus on charged BHs in de Sitter space-

times, the RNdS solutions. In Schwarzschild-like coordi-
nates, the metric reads

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3Þ

where FðrÞ ¼ 1 − 2Mr−1 þQ2r−2 − Λr2=3. M, Q are the
BH mass and charge and Λ is the cosmological constant.
The surface gravity of each horizon is then

κ� ¼
1

2
jF0ðr�Þj; � ∈ f−;þ; cg; ð4Þ

where r− < rþ < rc are the Cauchy horizon, event horizon
and cosmological horizon radius.
A minimally coupled scalar field on a RNdS background

with harmonic time dependence can be expanded in terms
of spherical harmonics,

X

lm

ΦlmðrÞ
r

Ylmðθ;ϕÞe−iωt: ð5Þ

Dropping the subscripts on the radial functions, they satisfy
the equation

d2Φ
dr2�

þ ðω2 − VlðrÞÞΦ ¼ 0; ð6Þ

where we introduced the tortoise coordinate dr� ¼ dr=F.
The effective potential for scalar perturbations is

VlðrÞ ¼ FðrÞ
�
lðlþ 1Þ

r2
þ F0ðrÞ

r

�
; ð7Þ

where l is an angular number, corresponding to the
eigenvalue of the spherical harmonics.
We will be mostly interested in the characteristic

frequencies of this spacetime, obtained by imposing the
boundary conditions

Φðr → rþÞ ∼ e−iωr� ; Φðr → rcÞ ∼ eiωr� ; ð8Þ
which select a discrete set of frequencies ωln, called the QN
frequencies [25]. They are characterized, for each l, by an
integer n ≥ 0 labeling the mode number. The fundamental
mode n ¼ 0 corresponds, by definition, to the longest-lived
mode, i.e., to the frequency with the smallest (in absolute
value) imaginary part.
To determine the spectral gap α, and, hence, the decay

rate of perturbations, we will focus on the set of all modes
ωln [For l ¼ 0 there is a zero mode, corresponding to Φ0

in Eq. (1), which we ignore here.] and set

α≡ inflnf−ImðωlnÞg; β≡ α=κ−: ð9Þ
We will henceforth drop the “ln” subscripts to avoid
cluttering. In previous works, we have used a variety of
methods to compute the QNMs [25,26]. The results shown
here were obtained mostly with the Mathematica package
of Ref. [27] (based on methods developed in Ref. [28]),
and checked in various cases with a variety of other
methods [25,26,29,30].

PHYSICAL REVIEW LETTERS 120, 031103 (2018)

031103-2



QNMs of RNdS BHs: The three families.—Our results are
summarized in Figs. 1–3 where one can distinguish three
families of modes.
Photon sphere modes: Black holes and other sufficiently

compact objects have trapping regions. Here, null particles
can be trapped on circular unstable trajectories, defining the
photon sphere. This region has a strong pull in the control
of the decay of fluctuations and the spacetime’s QNMs
which have large frequency (i.e., large jReωj) [11,31–33].
For instance, the decay time scale is related to the instability
time scale of null geodesics near the photon sphere. For
BHs in de Sitter space, we do find a family of modes which
can be traced back to the photon sphere. We refer to them as
“photon sphere modes,” or in short “PS” modes. These
modes are depicted in blue (solid line) in Figs. 1–3.
Different lines correspond to different overtones n; the
fundamental mode is determined by the large l limit (and
n ¼ 0); we find that l ¼ 10 or l ¼ 100 provide good
approximations of the imaginary parts of the dominating
mode; note, however, that the real parts do not converge
when l → ∞. These modes are well described by a WKB
approximation, and for very small cosmological constants
they asymptote to the Schwarzschild BH QNMs [26].
For small values of the cosmological constant, PS modes

are only weakly dependent on the BH charge. This is
apparent from Fig. 1.
ForΛM2 > 1=9 there is now a nonzerominimal charge, at

which rþ ¼ rc. This limit is the charged Nariai BH and is
shown as the blue dashed line in Fig. 2. The corresponding

QNMs are also qualitatively different, as seen in Fig. 1.
They, in fact, vanish in this limit, a result that can be
established by solving the wave equation analytically to
obtain (seeRef. [34] for the neutral case, we have generalized
it to charged BHs, see Supplemental Material [35])

ImðωÞ
κþ

¼ −i
�
nþ 1

2

�
: ð10Þ

Note that the results presented here are enough to
disprove a conjecture [36] that suggested that α should
be equal to minfκþ; κcg. Such possibility is inconsistent
with (10) and it is also straightforward to find other
nonextremal parameters for which the WKB prediction
yields smaller α’s (e.g., for ΛM2 ¼ 0.1 and Q ¼ 0 we have
κþ ¼ 0.06759, κc ¼ 0.05249, and α ¼ 0.03043).
dS modes: Note that solutions with purely imaginary ω

exist in pure dS spacetime [37,38]

ω0;pure dS=κdSc ¼ −il; ð11Þ

ωn≠0;pure dS=κdSc ¼ −iðlþ nþ 1Þ: ð12Þ

Our second family of modes, the (BH) dS modes, are
deformations of the pure de Sitter modes (12); the dominant
mode (l ¼ 1, n ¼ 0) is almost identical and higher modes
have increasingly larger deformations.
These modes are intriguing, in that they have a surpris-

ingly weak dependence on the BH charge and seem to be
described by the surface gravity κdSc ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

of the
cosmological horizon of pure de Sitter, as opposed to that

FIG. 1. Lowest lying quasinormal modes for l ¼ 1 and ΛM2 ¼
0.06 (left) and 0.14 (right), as a function of Q=M. The top plots
show the imaginary part, with dashed red lines corresponding to
purely imaginary modes, and solid blue to complex, PS modes,
whose real part is shown in the lower plots. The red circles in the
top plots indicate the modes of empty de Sitter at the same Λ,
which closely matches the first imaginary mode here, but lie
increasingly less close to the higher modes. Near the extremal
limit of maximal charge, another set of purely imaginary modes
(dotted green lines) comes in from −∞ and approaches 0 in the
limit. Only a finite number of modes are shown, even though we
expect infinitely many complex and extremal modes in the range
shown.

FIG. 2. Parameter space of the RNdS solutions, bounded by a
line of extremal solutions of maximal charge where r− ¼ rþ on
top, and for ΛM2 > 1=9 a line of extremal solutions where
rc ¼ rþ. In the physical region the value of β is shown. For small
ΛM2 the dominant mode is the l ¼ 1 de Sitter mode, shown in
shades of red. For larger ΛM2 the dominant mode is the large l
complex, PS mode, here showing the l ¼ 100 WKB approxi-
mated mode in shades of blue. For very large Q=M the l ¼ 0
extremal mode dominates. The green sliver on top where the NE
mode dominates is merely indicative, the true numerical region is
too small to be noticeable on these scales.
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of the cosmological horizon in the RNdS BH under
consideration. This can, in principle, be explained by the
fact that the accelerated expansion of the RNdS spacetimes
is also governed by κdSc [39,40].
This family has been seen in time evolutions [41] but,

to the best of our knowledge, was only recently identified
in the QNM calculation of neutral BH spacetimes [27].
Furthermore, our results indicate that as the BH “disap-
pears” (ΛM2 → 0), these modes converge to the exact de
Sitter modes (both the eigenvalue and the eigenfunction
itself).
Near-extremal modes: Finally, in the limit that the

Cauchy and event horizon radius approach each other, a
third “near extremal” family, labeled as ωNE, dominates the
dynamics. In the extremal limit this family approaches

ωNE ¼ −iðlþ nþ 1Þκ− ¼ −iðlþ nþ 1Þκþ; ð13Þ

independently of Λ, as shown by our numerics. As
indicated by Eq. (13), the dominant mode in this
family is that for l ¼ 0, this remains true away from
extremality.
In the asymptotically flat case, such modes seem to have

been described analytically in Refs. [42–44]. Here we have
shown numerically that such modes exist, and that they are
in fact the limit of a new family of modes. It is unclear (but
see Ref. [43]) if the NE family is a charged version of the
zero-damping modes discussed recently in the context of
rotating Kerr BHs [45]. It is also unclear if there is any
relation between such long lived modes and the instability
of exactly extremal geometries [46,47].
Maximizing β.—The dominating modes of the previous

three families determine β, shown in Fig. 2. Each family

has a region in parameter space where it dominates over the
other families. The dS family is dominant for “small” BHs
(when ΛM2 ≲ 0.02). In the opposite regime the PS modes
are dominant. Notice that in the limit of minimal charge
β ¼ 0, since κ− remains finite while the imaginary parts of
QNMs in the PS family approach 0 according to Eq. (10)
(since κþ → 0).
More interesting is the other extremal limit, of maximal

charge. In Fig. 2, the uppermost contours of the dS and PS
families show a region where β > 1=2.
Within this region as the charge is increased even further,

the NE family becomes dominant. In Fig. 2 this is shown
merely schematically, as the region is too small to plot on
this scale, but it can already be seen in Fig. 1.
To see more clearly how β behaves in the extremal limit

we show 4 more constant ΛM2 slices in Fig. 3. Here one
sees clearly how above some value of the charge β > 1=2,
as dictated by either the de Sitter or the PS family.
Increasing the charge further, β would actually diverge if
it were up to these two families (ωM approaches a constant
for both families, so ω=κ− diverges). However, the NE
family takes over to prevent β from becoming larger than 1.
Further details on these modes and on the maximum β are
shown in the Supplemental Material [35].
Conclusions.—The results in Refs. [13,14] show that the

decay of small perturbations of de Sitter BHs is dictated by
the spectral gap α. At the same time, the linear analysis in
Ref. [19] and the nonlinear analysis in Ref. [21] indicate
that the size of β≡ α=κ− controls the stability of Cauchy
horizons and consequently the fate of the SCC conjecture.
Recall that for the dynamics of the Einstein equations, and
also for the destiny of observers, the blow up of curvature
(related to β < 1) per se is of little significance: it implies
neither the breakdown of the field equations [48] nor the
destruction of macroscopic observers [49]. In fact, a formu-
lation of SCC in those terms is condemned to overlook
relevant physical phenomena like impulsive gravitational
waves or the formation of shocks in relativistic fluids. For
those and other reasons, the modern formulation of SCC,
which we privilege here, makes the stronger request β < 1

2

in order to guarantee the breakdown of the field equation at
the Cauchy horizon.
Here, by studying (linear) massless scalar fields and

searching through the entire parameter space of subex-
tremal and extremal RNdS spacetimes, we find ranges for
which β exceeds 1=2 but, remarkably, it does not seem to
be allowed, by the appearance of a new class of near-
extremal modes, to exceed unity. This opens the per-
spective of having Cauchy horizons which, upon pertur-
bation, can be seen as singular, by the divergence of
curvature invariants, but nonetheless maintain enough
regularity as to allow the field equations to determine
(classically), in a highly nonunique way, the evolution of
gravitation. This corresponds to a severe failure of
determinism in GR.

FIG. 3. Dominant modes of different types, showing the
(nearly) dominant complex PS mode (blue, solid) at l ¼ 10,
the dominant de Sitter mode (red, dotted) at l ¼ 1 and the
dominant NE mode (green, dashed) at l ¼ 0. The two dashed
vertical lines indicate the points where β≡ −ImðωÞ=κ− ¼ 1=2
and where the NE becomes dominant. (Note that the value of β is
only relevant for Λ > 0.)
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Finally, even though the BHs we considered are charged
and not expected to occur in nature, we do expect very
similar results to hold for BHs which are neutral but
rotating, by the standard charge-angular momentum anal-
ogy, where near-extremal charge corresponds to fast rotat-
ing BHs. Given the nonzero cosmological constant and the
existence of rapidly rotating BHs in our Universe [50–52],
these results cannot be taken lightly.
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