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We introduce an alternative type of quantum repeater for long-range quantum communication with
improved scaling with the distance. We show that by employing hashing, a deterministic entanglement
distillation protocol with one-way communication, one obtains a scalable scheme that allows one to reach
arbitrary distances, with constant overhead in resources per repeater station, and ultrahigh rates. In practical
terms, we show that, also with moderate resources of a few hundred qubits at each repeater station, one can
reach intercontinental distances. At the same time, a measurement-based implementation allows one to
tolerate high loss but also operational and memory errors of the order of several percent per qubit. This
opens the way for long-distance communication of big quantum data.
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Introduction.—Long-range quantum communication is a
prominent application of emerging quantum technologies. It
is a building block of quantum networks, with applications
to secure channels [1–5], distributed quantum computation
[6–9], or distributed sensing [10,11]. Despite the quantum
mechanical limits of repeaterless distribution of quantum
information [12,13], schemes which achieve the transmis-
sion of quantum information over noisy channels have been
suggested. One approach uses quantum error correction
(QEC), performed at regularly spaced stations, to protect
quantum information [14–17]. Here the transmission is fast;
however, error thresholds for channel noise and local
operations are rather stringent. Additionally, the overhead,
i.e., the number of qubits that need to be processed and
stored locally, is substantial, growing polylogarithmically
with the distance. Entanglement-based quantum repeaters
[18] (see also [19–27]) present a viable alternative, where
entanglement is distributed over short distances and a
(nested) combination of entanglement swapping and dis-
tillation is used to create high-fidelity entangled pairs over
longer distances. Using recurrence-type entanglement dis-
tillation with two-way classical communication [28,29], one
obtains a scalable scheme with a high noise tolerance for the
channel and local operations, polynomially growing local
resources, and moderate rates [18]. The latter are mainly
caused by the classical communication waiting times in
entanglement distillation and can be overcome by using
entanglement distillation protocols (EDPs) with one-way
communication [22].
Here, we present an alternative entanglement-based

quantum repeater scheme utilizing hashing [30,31]—an
efficient, deterministic EDP with one-way classical com-
munication. This allows the replacing of the nested

entanglement purification and swapping of schemes based
on recurrence protocols by a non-nested scheme, leading to
an improved scaling of the required local resources with the
distance [32]. Our scheme can handle channel errors and
loss as well as operational and memory errors. It features
ultrahigh rates and large error thresholds achieved by a
measurement-based implementation [15,31,33–35]. One-
way classical communication also minimizes the required
memory time, thereby reducing possible sources of imper-
fections. More importantly, the overhead in local resources,
i.e., the number of ancillary qubits and operations needed at
each repeater station per final qubit, is constant, i.e.,
independent from the distance. This is in stark contrast to
previous schemes, where local resources grow polylogarith-
mically or evenpolynomially. Furthermore, one can combine
this approach with a heralded scheme to deal with arbitrary
channel loss, the dominant source of noise in fiber or free-
space photon transmission. This paves the way towards
efficient long-distance big quantum-data transmission, the
essential ingredient in future quantum networks [36].
Setting and scheme.—We consider the settings where the

quantum channel and the local processing of quantum
information are lossy and/or noisy. To circumvent the
problem of the absorption probability of the channel
(e.g., an optical fiber connecting repeater stations) growing
exponentially quickly in the distance, we divide the channel
intoN segments of length l0 ¼ L=N, overwhich (noisy)Bell
pairs are generated. One can also use heralded schemes to
handle arbitrary (nonunit) channel loss. We assume n such
Bell pairs are generated over each segment using nc parallel
channels. The noisy Bell pairs between two neighboring
nodes are purified using the hashing EDP [30], determinis-
tically generating a fraction of cn output pairs, where c
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depends on the initial pair entropy. The resulting pairs are
connected at the intermediate nodes via entanglement
swapping, thereby generating cn long-distance entangled
pairs between the end nodes. Given perfect local operations,
hashing produces ideal pairs (asymptotically in n) that can
be used to yield perfect long-distance entangled pairs.
Below, we show how a measurement-based implementation
[31,33] allows us to obtain a scheme generating entangled
Bell pairs over arbitrary distances in the imperfect setting,
where only the end node noise limits the fidelity. All
operations are parallelizable, as only one-way classical
communication is required, and all Pauli correction oper-
ations, occurring in the protocol, can be postponed to be
performed just at the final outputs. The overall scheme is
summarized in Fig. 1. A purely QEC-based version without
local two-way communication is also conceivable [37].
Measurement-based hashing.—We now briefly describe

the key elements of our scheme, hashing and its measure-
ment-based implementation, and discuss their features
ensuring the efficiency and functionality in noisy settings.
Hashing distillation protocols operate collectively on a

large ensemble of n noisy Bell pairs. In a single round,
bilateral CNOT operations between a subset of OðnÞ pairs
and a target pair are applied, and the target pair is measured.
This reveals information about the remaining ensemble,
thereby purifying it. Repeating such rounds generates a
fraction cn of perfect pairs deterministically in the limit
n → ∞. The protocol thus has a nonzero yield c in the
noiseless case and requires only one-way classical com-
munication. However, standard hashing fails if operations
are noisy. As OðnÞ operations act on a single qubit, noise
accumulates, washing out all information [31]. We resolve
this using a measurement-based implementation [31],
where local noise up to 7% per qubit, for imperfect resource
states and imperfect measurements, is tolerated.
In a measurement-based implementation, quantum infor-

mation is processed by measurements rather than gates
[50,51]. Similarly to teleportation, input qubits are coupled
to an entangled resource state via Bell measurements,

realizing the desired operation. For operations that include
only Clifford gates and Pauli measurements—which is the
case for EDP and entanglement swapping protocols consid-
ered here—the procedure is deterministic and the resource
state consists of only input and output qubits. In fact, qubits
that aremeasured in the Pauli basis (e.g., the target pairs in the
hashing protocol) are unnecessary—a modified, smaller,
resource state suffices, where themeasurement results can be
deduced from the in-coupling Bell measurement outcomes.
The resource state corresponding to the hashing protocol has
n input and cn output qubits, as the hashing protocol maps n
Bell pairs to cn final pairs. The resource state at intermediate
repeater stations, which combines hashing and entanglement
swapping, is of size 2n (there are no output qubits, as
entanglement swapping is performed on cn output pairs
of the hashing protocol). This principle was used in
Refs. [33,35] to obtain resource states of minimal size for
a recurrence-based repeater, and in Refs. [35,52] the explicit
construction of resource states for different tasks is consid-
ered. The key feature, that even complex circuits with many
gates can be implemented with a small resource state (in
particular, excluding qubits that are measured at any stage of
the protocol), leads to a remarkable robustness of measure-
ment-based implementations [15,31,33–35].
In a measurement-based approach, the noise is manifest

in imperfect resource states and Bell measurements. We
assume a local noise model for the resource states where
local depolarizing noise (LDN) is applied independently
to each of the resource qubits (see also [37]), as in
Refs. [15,31,33–35]. Such a model is faithful if resource
states are affected by local decoherence or are themselves
generated via distillation, as explained in Refs. [53,54].
Furthermore, thismodel accounts for the fact that generating
entangled states of a larger number of qubits is experimen-
tallymore demanding. The imperfect Bellmeasurements are
also modeled by local noise preceding an otherwise perfect
measurement. Memory errors, modeled by local depolariz-
ing noise, can also be accounted for in this way.
When performing a Bell measurement, one can effec-

tively shift the noise between the two qubits [34,35]. In
particular, one can (formally) move the noise from input
qubits of the local resource states onto the input Bell pair
qubits (see Fig. 1), resulting in perfect resource states. Only
noise on output qubits needs to be considered, which can be
done afterwards. Hence, a noisy protocol is equivalent to a
perfect protocol acting on more noisy inputs, where the
output state is subsequently affected by local noise.
Repeater scheme in an asymptotic noisy setting.—We

now apply these insights to our repeater protocol in a setting
where channels are lossy and noisy, entanglement distillation
and Bell measurements are imperfect, andmemory errors for
the storage of resource states or entangled pairs are accounted
for. All noise processes can be included in noise acting
on resource states, as argued above (for details regarding
memory errors, see [37]).

FIG. 1. Illustration of a quantum repeater based on hashing.
The channel is divided into N elementary segments, where short-
distance entangled pairs are generated over all segments, i.e.,
between all repeater stations, in parallel. Entanglement distil-
lation via hashing and entanglement swapping are performed in a
measurement-based way, by coupling the elementary pairs via
Bell measurements to the locally stored resource state. In contrast
to quantum repeaters based on recurrence protocols, no nesting is
required. Direct encoded transmission would consist in sending
encoded information sequentially through the channel. Please
note that this is only an illustration; the real resource states
contain at least the order of 100 qubits.
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Resource states that we use at intermediate repeater
stations have only input qubits; hence, all noise can be
(formally) moved to input pairs. Thus, perfect hashing
followed by perfect entanglement swapping is performed
on more noisy Bell pairs. As perfect hashing asymptotically
produces perfect states, we are in a situation where perfect
Bell states are connected via entanglement swapping.
This leads to Bell states at the end nodes, which are affected
only by one-step local noise at the final stations. Note that the
noise that acts at these final stations is independent from the
distance and is the only factor which determines the final
achievable fidelity, in an asymptotic setting. The error
threshold for the overall repeater scheme is the same as for
measurement-based hashing, up to 7% local noise per qubit.
Communication rates and multiplexing.—Our version of

the hashing protocol operates on n initial pairs, generated
over a short distance with a sufficiently high fidelity. For
instance, one can use a probabilistic (but heralded) scheme
at this stage, where a pair is generated with probability η.
We denote the required time that involves pair creation,
photon transmission, and classical communication time for
heralding within an elementary segment by t0. η includes
channel loss and probabilistic interfaces and can, in
principle, be arbitrary small. The time required for the
local processing of the pairs (in our case, the time to
perform the Bell measurements) is denoted by tp. In order
to minimize the waiting time (and maximize the rate), we
use nc parallel channels. Choosing nc ¼ nð1=ηþ ϵÞ suf-
fices to obtain an elementary pair on n of these channels,
except with probabilityOðe−ϵ2nÞ, from whichm ¼ cn long-
distance pairs are deterministically generated.We can choose
ϵ ¼ n−1=4, such that it vanishes as n increases. We obtain m
Bell pairs over all N links within a single time step t0 with
exponentially increasing probability ½1 −Oðe−ϵ2nÞ�N. Only
the classical communication time tc ¼ L=cfiber (cfiber is the
speed of light in fiber) to transmit measurement outcomes
depends on the distanceL. The rate per channel is then given
by R ¼ ðcη=t0 þ tpÞ in the limit n → ∞. The classical
communication time tc does not enter, because one can
already start to process new elementary Bell pairs once the
pairs from the previous round are processed. Note that t0 can
be made as small as the processing time by making the
elementary segments short enough. The rate R is thus
ultimately limited by cη=tp and thus by tp, which is also
the time scale which limits the rate of QEC-based repeaters
[14]. For more details and examples, see [37].
Hashing and repeaters with a finite number of copies

n.—So far, we considered the scaling properties of the
protocol in an asymptotic setting. Next, we show that, for
any fixed channel length, a finite number of pairs suffices.
For this, we bound the fidelity of the resulting Bell pairs
from the basic hashing from below. With this, one can
then compute the fidelity of the final Bell pairs resulting
from our protocol, the required number of copies for a
hashing-based repeater, and the overall efficiency. Hashing

produces m ¼ cn resulting Bell pairs out of n initial noisy
Bell pairs, which is also the number of final, long-distance
output pairs, as hashing is deterministic. The yield is given
by c ¼ m=n ¼ 1 − SðWÞ − 2δ [30], where SðWÞ is the
entropy of the ensemble of initial pairs and δ is a parameter
which affects both the yield and the fidelity for finite sizes.
The overhead per pair at each repeater station is determined
by O ¼ 4n=m, as 2n qubits are needed for the resource
state and another 2n for the Bell pairs. The overhead is thus
given byO ¼ 4½1 − SðWÞ − 2δ�−1 and reaches the constant
4½1 − SðWÞ�−1, which does not scale with the distance
L ∼ N, in the large n limit.
Next, we compute how the distance affects the final pair

fidelity, before the noise of the local devices acts on the
output pairs at the final repeater stations. This quantity,
called private fidelity, bounds the correlations which an
eavesdropper might have with the output pairs given that
the last noise step is independent of the eavesdropper
[1,5,55]. Because of the measurement-based implementa-
tion, we need only to analyze the scaling of the noiseless
setting. The hashing protocol succeeds with a probability
of 1 −Oðexpð−nδ2ÞÞ [30], provided that the fidelity of
the initial pairs is large enough (for Werner states, the
minimum fidelity is Fmin ≈ 0.8107). An appropriate choice
of δ, such as δ ¼ n−1=4, ensures that the success probability
approaches unity. For the quantum repeater to succeed,
the entanglement distillation processes at each of the
N segments have to succeed. The number of links N is
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FIG. 2. Plot of the global, private fidelity and yield as a function
of the number of initial pairs for δ ¼ n−1=5 (a),(b) and δ ¼ n−1=3

(c),(d). F denotes the fidelity of the initial Bell pairs, and the
number of repeater links is N ¼ 100. We assume a local
depolarizing noise of 1% per qubit. The fact that the blue curve
in (a) seems to starts “out of the blue” at around n ≈ 600 is a
consequence of the vanishing yield below this number [see (b)].
In the choice of δ, there is trade-off between a higher fidelity
(larger δ) and a higher yield (smaller δ). Additional data for more
links can be found in Ref. [37].
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proportional to the total length of the channel. For the
global, private fidelity of all m outputs, one then obtains
(see [37])

Fgp ≥ ½1 − α expð−βnδ2Þ�N ≈ 1 − Nα expð−βnδ2Þ; ð1Þ

where α and β are constants depending on the form of the
input Bell pairs (see also [37]). This shows that the choice
of the number n of initial pairs has to depend on N and,
therefore, the length. While this number is increasing, the
overhead per transmitted qubit is constant. Choosing n such
that Nα expð−βn1=2Þ < ϵ with ϵ small leads to Fgp close to
unity, i.e., Fgp ≥ 1 − ϵ. We note that, from a practical
perspective, one would, however, like to limit n, as a
resource state of size 2n needs to be stored at each repeater
station. The fidelity in Eq. (1) is the fidelity of the entire set
of m output pairs relative to a tensor-product state of m
perfect pairs, and, consequently, the same value is a (lousy)
bound for the final fidelity of the individual pairs. From
this, one can also compute (a bound on) the output fidelity
by applying the local depolarizing noise from the output
qubits of the resource states.
For an illustration of the bounds on the global, private

fidelity and the yield c for different values of the fidelity of
the initial pairs for reasonable parameters, see Fig. 2.
We obtain the highest attainable fidelity if one measures

all initial pairs except one, leading to an n → 1 hashing
protocol. The performance of the n → 1 protocol is dis-
cussed in detail in Ref. [37]. The required number of copies
to achieve purification depends on the initial fidelity of the
pairs, where for a channel noise of several percent a few
hundred copies suffice.
Comparison of approaches.—The main advantage of our

scheme over existing ones [14,18,22,25] is the superior
scaling of the local resources with the distance, which is
reduced from polynomial [18,22] or polylogarithmic
[14,25] to constant. The robustness to operational errors
is comparable for all approaches assuming a measurement-
based implementation [15,31,33]. Our scheme shares the
high tolerance of loss errors during transmission with

other entanglement-based quantum repeater architectures
[18,22,25], which is due to the fact that one can use
heralded schemes to create the initial Bell pairs. QEC-based
schemes [14] are constrained, with a fundamental limit of
50% loss tolerance imposed by the no-cloning theorem
[12]. The long distribution times of the 1998 protocol [18]
are avoided, since hashing is a deterministic one-way EDP.
For a comparison of key features of the quantum repeater
protocols, see Table I. In Ref. [37], we also compare the
achievable rates and fidelities for our and the 1998 protocol
[18] for a measurement-based implementation with 1%
LDN, up to 104 links. We find that the rates are up to 9
orders of magnitude higher and anticipate that they are 2–3
orders of magnitude higher compared to what QEC-based
quantum repeaters [14] achieve. Thus, our new scheme,
beyond superior asymptotic performance, also yields better
numbers in real world regimes.
We note that, since hashing protocols for the distillation

of general graph states exist as well [56], the extension of
our architecture to general multipartite quantum networks
[57] is straightforward.
Summary and conclusion.—We have constructed a

quantum repeater which operates with a constant local
overhead. This is in stark contrast to all previous long-range
communication proposals, which exhibit polynomial or
polylogarithmic overheads in local resources. This guar-
antees a nonzero yield, high rates, and error thresholds for
resource states of several percent and opens the way for big
data long-distance quantum communication. The scheme
requires only short-time quantum memories for large
resource states, and even intercontinental distances can be
reached using only a few hundred qubit storage at
each repeater station. The protocol has a computational
overhead—the determination of the local correction oper-
ations from the classical hash functions, which is generally
computationally expensive and might become relevant
when the number of pairs becomes very large [58]. Even
this eventuality could be circumvented by either using
concatenated hashing of moderate-sized blocks, as dis-
cussed above, or through different one-way entanglement

TABLE I. Comparison of key features of different quantum repeater architectures [14,18,22,25] and our new protocol.

Scheme
Knill and
Laflamme

Briegel, Dür,
Cirac, and Zoller

Hartmann, Kraus,
Briegel, and Dür

Jiang, Taylor,
Nemoto, Munro,

Van Meter, and Lukin

Zwerger, Pirker,
Dunjko,

Briegel, and Dür

Year 1996 1998 2007 2009 2017
Based on QEC Bell pairs and

two-way EDP
Bell pairs and
one-way EDP

Bell pairs and
QEC

Bell pairs and
hashing

Scaling of local
resources

O(polylogðLÞ) O(polyðLÞ) O(polyðLÞ) O(polylogðLÞ) Constant

Rate determined by 1=½polylogðLÞtp� 1=½polyðLÞtc� 1=½polyðLÞmaxðtp;t0Þ� 1=½polylogðLÞ
maxðtp; t0Þ�

1=½constant maxðtp; t0Þ�

Constraint on loss Yes No No No No
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distillation protocols (with the same key features as hash-
ing), based on, e.g., efficiently decodable low-density parity
check codes [58,59] or POLAR codes [60].
Our approach requires the short-time storage of a number

of qubits at each repeater station which is, arguably, large
when compared to recent works focused on readily
implementable settings. However, our scheme compensates
by overcoming many of the drawbacks of existing schemes:
It achieves high rates and makes repeaters fully scalable
with a small overhead, while being robust against realistic
channel and memory errors and loss.
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