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Bending rigidities of tensionless balanced liquid-liquid interfaces as occurring in microemulsions are
predicted using self-consistent field theory for molecularly inhomogeneous systems. Considering
geometries with scale invariant curvature energies gives unambiguous bending rigidities for systems
with fixed chemical potentials: the minimal surface Im3m cubic phase is used to find the Gaussian bending
rigidity κ̄, and a torus with Willmore energy W ¼ 2π2 allows for direct evaluation of the mean bending
modulus κ. Consistent with this, the spherical droplet gives access to 2κ þ κ̄. We observe that κ̄ tends to be
negative for strong segregation and positive for weak segregation, a finding which is instrumental for
understanding phase transitions from a lamellar to a spongelike microemulsion. Invariably, κ remains
positive and increases with increasing strength of segregation.
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Interfaces characterized by dense surfactant packings,
such as microemulsions [1–3] and biological membranes
[4] that are found naturally or manipulated artificially to be
in a state of near-zero tension, have extensive areas. Often,
such interfaces feature a spontaneous curvature that man-
ifests in spherical or cylindrical (swollen) micelles [5,6].
When a system is tensionless and precisely balanced—
typical for single component bilayers and expected for the
middle-phase microemulsions—the interface’s spontane-
ous curvature vanishes [7] and ultralow interfacial energies
can be achieved [8,9]. Here, the elastic moduli, mean (κ)
and Gaussian (κ̄) bending rigidities, control the interface
fluctuations and topology, respectively. Such systems show
a first-order phase transition from lamellar to spongelike
phases, e.g., upon an increase of the temperature for
nonionic systems and a change of the salinity for ionic
systems [3,8,10]. A preeminent challenge is to predict,
from a molecular model for such interfaces, a means to
induce a sign change in the κ̄ from negative to positive; this
signals the loss of stability of the lamellar Lα oil-surfactant-
water ordering in favor of a phase with saddles, L3 or
spongelike. Another long-standing problem is understand-
ing the relation between surfactant chain architecture and
corresponding bending rigidities [11,12].
Earlier theoreticalmethods [13,14], experiments [15–17],

and simulations [18,19] that attempted to link bending
rigidities to molecular properties did not provide informa-
tion on κ̄; moreover, the results for κwere not consistentwith
each other. Therefore, uncertainties prevail and these persist
also because internal checks for presented rigidities are
rarely provided. As a result, there exists no accepted
molecular level theory that convincingly links molecular
characteristics to both mechanical parameters of the

interfaces (κ and κ̄). Notably, the missing information for
κ̄ is remarkable as itsmagnitude and, in particular, its sign are
fundamental to the understanding of microemulsions.
The primary obstacle in establishing a molecular model

for determining bending rigidities is the requirement of
curving the interface at fixed chemical potentials. In this
Letter, we propose an elegant protocol with internal checks
to find these rigidities. We consider interfaces with scale
invariant curvature energies and illustrate the protocol for
tensionless balanced liquid-liquid (L=L) interfaces. In line
with experimental findings, we report the existence of a
sign switch for κ̄, which triggers a phase transition from
planar to spongelike phases in middle-phase microemul-
sions. We focus on the role of the interaction parameter,
which in strong segregation has a large value and for weak
segregation has a small value; further, we elaborate on the
role of the molecular weights of the solvents and that of the
amphiphile.
Experiments, simulations, and calculations [13–19]

reviewed above have major disadvantages and ambiguities
because the systems featured too many complications. We
examine a tensionless balanced interface, which still is
highly relevant to middle-phase microemulsion systems
wherein oil and water are separated by a surfactant film
with extensive areas and often a complex interface top-
ology. Our focus on tensionless (interfacial tension γ ¼ 0)
balanced (spontaneous curvature J0 ¼ 0) L=L interface
avoids the complications of a finite Laplace pressure (i.e.,
ΔPL ¼ 0) when imposing some interfacial curvature. Such
a model is readily implemented in the Scheutjens-Fleer
self-consistent field theory (SF-SCF) for molecularly inho-
mogeneous systems. We can consider this idealized system
in three different geometries with scale invariant curvature
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energies. The latter is essential, as it allows for an analysis
in the grand canonical ensemble (μ, V, T), which opens a
convincing route to estimate the rigidities: (i) a spherically
curved droplet with ΔPL ¼ 0 is used to find 2κ þ κ̄; (ii) a
minimal Im3m surface (by construction has ΔPL ¼ 0) is
used to find κ̄; (iii) a minimal torus interface is used to find
κ also for conditions that ΔPL ¼ 0.
We note that the route to obtain rigidities of balanced

tensionless L=L interfaces shows similarities but also
important differences from the symmetric freely dispersed
lipid bilayers [20]. For bilayers, we could use the Im3m
cubic phase and the spherical vesicle to find κ̄ and 2κ þ κ̄,
respectively. The cylindrically curved vesicle could be
used to obtain κ in two ways: (i) as the number of lipids
per unit area is found to be a constant (i.e., not a function of
the radius R of the cylindrical vesicle), κ was found from
the excess Helmholtz energy per unit length Fσ

c , i.e.,
κ ¼ RFσ

c=π; (ii) realizing that the grand potential of the
cylindrical vesicle per unit length Ωc is split up equally
into bending energy and stretching energy, κ is also found
from (half) the grand potential density per unit length, i.e.,
κ ¼ RΩc=ð2πÞ. However, for the tensionless balanced L=L
interface, curved in cylindrical geometry with ΔPL ¼ 0, κ
can neither be computed from the Helmholtz energy per unit
length, nor from the grand potential per unit length, as there is
neither a conservation of the number of surfactant per unit
area nor a conservation of the chemical potentials of the
molecules of the system [cf. Figs. 1(c) and 1(d)]. Importantly,
in the L=L interface, we do not find a coincidental equal
splitting of curvature and tension energies.
Following Helfrich, by expanding the interfacial tension

(γ) in mean curvature (J ¼ 1=R1 þ 1=R2) and Gaussian

curvature (K ¼ 1=R1R2), with R1, R2 being principle radii
of curvature as

γðJ; KÞ − γð0; 0Þ ¼ −κJ0J þ
1

2
κJ2 þ κ̄K; ð1Þ

we identify γðJ; KÞ as the appropriate characteristic func-
tion that carries the bending information for curving the
interface at constant chemical potentials [21]. This expan-
sion is the starting point for our analysis of interfacial
equilibrium properties. For the balanced L=L interface,
refer Fig. 1(d), we find curved interfaces that exist at
chemical potentials equal to that of the ground state
(tensionless balanced planar interfaces) not only for the
surfactant but also for the two solvents. Note that, in this
system, both γð0; 0Þ ¼ 0 and J0 ¼ 0, and Eq. (1) simplifies
to γðJ; KÞ ¼ 1

2
κJ2 þ κ̄K.

Within the SF-SCF framework, extremizing the mean
field free energy for a molecularly inhomogeneous system
provides both structural and accurate thermodynamic
information [20,22–27]. We have implemented a coarse-
grained molecular model in which there are two types of
spherically symmetric segments A and B. These segments
are used in two solvents, each with length n, An and Bn
forming the two liquid phases α and β, respectively, and in a
diblock copolymer composed of blocks of equal length N,
ANBN . This approach requires molecular partition func-
tions, which are evaluated within a lattice considering the
molecules as freely jointed chains. Accordingly, segments
fit on lattice sites. The lattice sites are organized as
homogeneously curved or planar layers. Driven by the
segregation between the segments, an interface develops on
which the lattice geometry imposes the curvature. Segment
density gradients can only develop in the direction
perpendicular to such interface, as a mean field approxi-
mation is implemented in lattice layers “parallel” to the
interface. In the absence of density gradients, the model is
equivalent to the Flory-Huggins theory. There is just one
Flory-Huggins interaction parameter (χ) between mono-
mers A and B. We choose a value slightly above the critical
point of the binary solvent (χcr ¼ 2=n). In the following,
the minimum value used for n is four, and the interaction is
chosen between χ ¼ 0.52 and 0.68 (for more details on
method and model refer Supplemental Material [28]).
Volume fraction profiles φðzÞ and the lateral pressure

distribution pðzÞ ¼ −ωðzÞ, with ω as the grand potential
density, are presented for the default planar tensionless L=L
interface in Figs. 1(a) and 1(b). Here, z≡ z=b is the
dimensionless normal coordinate. In Fig. 1(a), we see that
the two liquids give a Van der Waals–like profile and the
accumulated copolymers have their blocks on correspond-
ing sides of the interface. The pressure profile pðzÞ [see
Fig. 1(b)] has a negative excursion at the interface due to
the contribution from the L=L interface and positive
“wings” on either side of the interface due to the overlap
of copolymers in a brushlike configuration. From previous

(a) (b)

(c)
(d)

FIG. 1. (a) Volume fraction distribution and (b) lateral pressure
distribution (in kBT=b3) in a planar tensionless interface. (c) Area
per surfactant molecule (Γ) (in units b2) and (d) chemical
potential of surfactant (μ≡ μs) (in units of kBT) as a function
of interface curvature as indicated for systems with ΔPL ¼ 0.
Surfactant A30B30, solvents A4 and B4, χ ¼ 0.6.
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work [29], we know that γ ¼ −
P

zpðzÞ and that the
second moment of the pressure distribution with respect
to the Gibbs plane (Rg) provides a direct estimate of
κ̄ ¼ P

−ðz − RgÞ2pðzÞ. The latter relation proved useful
for evaluating κ̄ of lipid bilayers and presents a strong test
for alternative, more elaborate routes to obtain the same
quantity.
Similar as for lipid bilayers, an independent alternative

route for evaluating κ̄ makes use of three-gradient SCF
computation as shown in Fig. 2(a), where on all six faces of
the elementary box, Neumann boundary conditions apply;
the elementary box is 1=8 of a unit cell of an Im3m phase,
and 8 unit cells are shown in Fig. 2(b). When equal
amounts of A and B are present in the system, the interface
splits the volume into two identical subvolumes (phase α
and β), while J ¼ 0 along the surface and ΔPL ¼ 0. As
soon as the copolymers are added, such that the chemical
potential of all molecular species is equal to the corre-
sponding values of the planar tensionless system, we
lie within an ðμ; V; TÞ ensemble; thus, the grand potential
Ω ¼ F −

P
jμjnj is the characteristic function, and Ω ¼

κ̄
R
M KdA. Using the Gauss-Bonnet theorem for a compact,

boundaryless Riemann manifold, the integral of curvature
over the area can be evaluated as −8π [30,31]. Thus, the
grand potential for the unit cell Ω ¼ −8πκ̄. Hence, from
the scale invariant grand potential, Ω directly follows κ̄.
The result is consistent with the second moment over

the pressure profile (see Table S1 in Supplemental
Material [28]).
The procedures to evaluate κ are more involved. In

Figs. 1(c) and 1(d), we have presented typical results for
spherically and cylindrically curved interfaces when
ΔPL ¼ 0 as a result of the adsorption of the copolymers.
In Fig. 1(c), we show the area per copolymer at the interface
(inverse of the adsorbed amount), and Fig. 1(d) shows the
corresponding chemical potentials as a function of the
curvature J. In Fig. 1(d), we notice that the chemical
potentials remain constant upon bending in case of spheri-
cal curvature. This means that in this geometry bending is
performed in the ðμ; V; TÞ ensemble. The reason why the
system can maintain its chemical potentials upon bending
of the interface is traced to the known fact that integrating
Eq. (1) over the area Ω ¼ R

M γðJ;KÞdA ¼ 4πð2κ þ κ̄Þ is a
constant irrespective of the size of the spherical droplet
showing scale invariance.
Now an indirect route is available to compute κ, namely,

from combining the total curvature energy from the
spherical droplet with the Gaussian bending modulus κ̄
found above. Ideally, we would like to validate this indirect
route with a direct estimate.
Again, as in the cylindrical geometry, neither the

adsorbed amount of surfactant [cf. Fig. 1(c)], nor the
corresponding chemical potential [cf. Fig. 1(d)] is con-
served, and we cannot use this geometry to obtain κ. A
direct route to evaluate the mean bending modulus is still
possible using a system that features a minimal torus, as
illustrated in Fig. 2(c). Within SF-SCF, this is realized using
a two-gradient (r, z) cylindrical lattice. A typical result is
presented in Fig. 2(d) as a density contour plot in the (r, z)
cross section. From the Gauss-Bonnet theorem, as the torus
has genus g ¼ 1, the integral

R
M KdA vanishes. Moreover,

the so-called Willmore energy of the torus has contribution
only from mean curvature W ¼ 1

4

R
M J2dA.

In 1965, T. J. Willmore conjectured that the Willmore
energy (W) of a smooth torus immersed in 3D space is
always greater than or equal to 2π2 [32]. This conjecture
was proved by Marques and Neves in 2014 [33]. The
Willmore energy reaches its minimum when the radius of
revolution is

ffiffiffi
2

p
times the radius of the generating circle,

as shown in Fig. 2(d). By integrating the Helfrich equation
for the toroidal configuration with minimal Willmore
energy, we obtain the grand potential for torus as Ωt ¼
1
2
κ
R
M J2dA ¼ 2κW ¼ 4π2κ.

Now the protocol boils down to generating this minimal
torus in SF-SCF, while adding the copolymer, such that
ΔPL ¼ 0. It occurs that, in this case, the system converges
with all its chemical potentials equal to that of the planar
tensionless interface and lies within the (μ, V, T) ensemble.
Similar to the droplet case, this result is traced to the scale
invariance, in this case, of the minimal Willmore energy. Its
grand potential gives a direct estimate of κ ¼ Ωt=4π2.

β

α

(a) (b)

(c) (d)

FIG. 2. Volume fraction distribution of α phase from 3D SCF
calculation of interface modeled as Im3m cubic phase. One-
eighth of a unit cell is shown in (a), and 8 unit cells are shown for
visualization in (b). Schematic illustration of an interface in torus
shape is shown in (c). Volume fraction distribution of α phase
from 2D SCF calculation of minimal torus in a cylindrical lattice
is shown in (d). The molecular model is similar to that in Fig. 1.
Color scale from blue to red is 0.2–0.8 for all contours.
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The values found for κ by the direct and indirect routes
are congruent, proving that there is complete consistency in
obtaining the bending rigidities, using scale invariant
surfaces, for tensionless balanced L=L interfaces [28].
Our protocol is available at Ref. [34].
As we have established the molecular link for bending

rigidities, we now present the chain length dependence
of the bending rigidities for the regime where N > n in
Figs. 3(a) and 3(b), and for N ≈ n in Figs. 3(c) and 3(d).
The trends for N > n support the results from simulations
[18,19,35]. While it would be alluring to conclude that
bending rigidities have a linear dependence on the chain
length of the surfactants, results in regime n ≈ N contradict
this observation and the dependencies are clearly nonlinear
[see Figs. 3(c) and 3(d)]. It is observed that the dependence
of rigidities on surfactant chain length is strongly influ-
enced by solvent chain length and interaction parameter
between monomeric units, an important effect that has not
been addressed in previous works [11–19]. A thorough
analysis of the magnitude of κ is, however, beyond the
scope of the present Letter and will be presented elsewhere.
Moving from the regime where the solvent length is

smaller compared to the surfactant block length, n < N, to
the regime where the solvent length is comparable to that of
the surfactant, we observe that κ̄ is of opposite sign
[cf. Figs. 3(a) and 3(c)]. Such a sign switch is of exceptional
interest, as it addresses a topological phase transition in
microemulsions that can be achieved in two ways: (1) by
tuning the interaction parameter for fixed solvent and
surfactant lengths and (2) by tuning solvent length for
fixed surfactant length and Δχ ¼ χ − 2=n.

In Fig. 4(a), the dependence of both κ and κ̄ are shown
for surfactant block length of N ¼ 20 as a function of a
measure of closeness to the critical point of the binary
solvent Δχ. The Gaussian bending modulus κ̄ switches
from negative to positive when moved toward weak
segregation; this transition occurs earlier in higher n
(dashed line) for fixed N.
A similar effect can also be achieved by tuning the

surfactant chain length for a given solvent chain length and
interaction energy (Δχ). Experimentally, one can reach
weak segregation by the addition of a suitable cosolvent,
which diminishes the difference between the two primary
solvents.
A summary of results, obtained by tuningN, is presented

as a “phase diagram” in Fig. 4(b). The two governing
parameters, i.e., block length of the copolymer and the
chain length of the solvent, are on the x and y axis,
respectively. The interaction parameter is chosen as Δχ. By
tuning the surfactant length for given interactions (Δχ) and
solvent chain length, κ increases and κ̄ decreases mono-
tonically, also showing a sign switch at the solid lines.
These results imply the tendency of the interface to

remain planar on average when n ≪ N. This result is
contrasted with the situation when the length of the solvent
molecules is increased to be similar, n ≈ N, or even larger
than that of the copolymer, n > N; κ̄ becomes positive in
this regime, while κ is small but positive. For large n, we
have κ̄ > 0; 0 < κ < 1. These features are consistent with a
sponge phase (Winsor III) [6], which grows in importance
with reducing χ. Stable, but very flexible and strongly
fluctuating, lamellar phases (as κ̄ < 0 and 0 < κ < 1) are
observed as N is increased for fixed n, whereas for very
large N, κ is > 1, and we enter a region where the
fluctuations of the interface are weak, crossing the dashed
lines, as shown in Fig. 4(b).

(a)

(c) (d)

(b)

FIG. 3. Chain length dependence of bending rigidities (in units
of kBT). (a),(b) N > n regime: chain length of bulk phases
fixed (A4, B4), surfactant chain length is varied (ANBN , where
20 < N < 50; 0.1 < Δχ < 0.2). (c),(d) N ≈ n regime: chain
length of bulk phases fixed (A20, A20), surfactant chain length
is varied (ANBN , where 16 < N < 20; 0.3 < Δχ < 0.4).

(a) (b)

FIG. 4. (a) Gaussian bending modulus (blue axis) κ̄ (in units of
kBT) and mean bending modulus (red axis) κ (in units of kBT) as
a function of Δχ (Δχ ¼ χ − 2=n). Surfactants are modeled as
ANBN ; α phase is modeled as An and β phase is modeled as Bn
(solid line: n ¼ 4, dashed line: n ¼ 6]. (b) Phase diagram in n and
N coordinates for fixed Δχ as indicated. The sign and magnitude
(in units of kBT) of the rigidities are indicated. Note that, within
the mean field model n,N are related to the radii of gyration in the
bulk as Rg ¼ b

ffiffiffiffiffiffiffiffi
n=6

p
and RG ¼ b

ffiffiffiffiffiffiffiffiffiffiffi
2N=6

p
, for the solvent and

copolymer, respectively, where b is bond length.
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We have linked molecular characteristics to bending
rigidities for surfactant-covered L=L interfaces. Using
surfaces with scale invariant curvature energies is embel-
lished as an elegant route to determine κ and κ̄ unambig-
uously; this route cautiously exploits the tensionless state of
the interfaces and avoids the linear term in curvature. Large
deviations from these constraints imply the loss of the
microemulsion middle phase in favor of emulsions with oil-
in-water or water-in-oil droplets; however, understanding
the effects of small deviations is vital, as it is a prerequisite
for any detailed comparison with experiments. The current
analysis provides a natural starting or reference point to
generalize for molecular asymmetry, spontaneous curva-
ture, and finite tension of the interfaces.

This work is part of an Industrial Partnership
Programme, “Shell/NWO Computational Sciences for
Energy Research (CSER-16),” of the Foundation for
Fundamental Research on Matter (FOM), which is part
of the Netherlands Organisation for Scientific Research
(NWO) (Project No. 15CSER26).

*Corresponding author.
ramanathan.varadharajan@wur.nl

†frans.leermakers@wur.nl
[1] P. G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294

(1982).
[2] I. F. Guha, S. Anand, and K. K. Varanasi, Nat. Commun. 8,

1371 (2017).
[3] A. Labrador, A. Seddon, A. Squires, C. Dicko, C. Pfrang, E.

Cabrera-Martinez, K. Rastogi, N. Cowieson, and T. Plivelic,
Nat. Commun. 8, 1724 (2017).

[4] C. Tanford, The Hydrophobic Effect: Formation of Micelles
and Biological Membranes (J. Wiley, New York, 1980).

[5] S. Schacht, Q. Huo, I. G. Voigt-Martin, G. D. Stucky, and F.
Schuth, Science 273, 768 (1996).

[6] G. Gompper, M. Schick, and S. Milner, Self-Assembling
Amphiphilic Systems (Academic Press, Cambridge, 1995),
ISBN-13 978-0122203169.

[7] S. A. Safran, Statistical Thermodynamics of Surfaces, In-
terfaces, and Membranes (Perseus Books, New York,
1994), Vol. 90.

[8] S. A. Safran, D. Roux, M. E. Cates, and D. Andelman, Phys.
Rev. Lett. 57, 491 (1986).

[9] L. Scriven, Nature (London) 263, 123 (1976).

[10] M. Cates, D. Roux, D. Andelman, S. Milner, and S. Safran,
Europhys. Lett. 5, 733 (1988).

[11] T. Hellweg and D. Langevin, Phys. Rev. E 57, 6825
(1998).

[12] E. Kurtisovski, N. Taulier, R. Ober, M. Waks, and W.
Urbach, Phys. Rev. Lett. 98, 258103 (2007).

[13] I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux, and W.M.
Gelbart, Phys. Rev. Lett. 60, 1966 (1988).

[14] A. Würger, Phys. Rev. Lett. 85, 337 (2000).
[15] M. Gradzielski, D. Langevin, and B. Farago, Phys. Rev. E

53, 3900 (1996).
[16] M. Gradzielski, D. Langevin, T. Sottmann, and R. Strey, J.

Chem. Phys. 106, 8232 (1997).
[17] C. R. Safinya, E. B. Sirota, D. Roux, and G. S. Smith, Phys.

Rev. Lett. 62, 1134 (1989).
[18] L. Rekvig, B. Hafskjold, and B. Smit, Phys. Rev. Lett. 92,

116101 (2004).
[19] F. M. Thakkar, P. K. Maiti, V. Kumaran, and K. G. Ayappa,

Soft Matter 7, 3963 (2011).
[20] F. A. M. Leermakers, J. Chem. Phys. 138, 154109 (2013).
[21] W. Helfrich, Z. Naturforsch. 28C, 693 (1973).
[22] R. A. Kik, F. A. M. Leermakers, and J. M. Kleijn, Phys. Rev.

E 81, 021915 (2010).
[23] T. Cosgrove, T. Heath, B. Van Lent, F. Leermakers, and

J. Scheutjens, Macromolecules 20, 1692 (1987).
[24] P. N. Hurter, J. M. Scheutjens, and T. A. Hatton, Macro-

molecules 26, 5592 (1993).
[25] C. Wijmans, J. Scheutjens, and E. Zhulina, Macromolecules

25, 2657 (1992).
[26] J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem. 83,

1619 (1979).
[27] G. Fleer, M. A. C. Stuart, J. M. H. M. Scheutjens,

T. Cosgrove, and B. Vincent, Polymers at Interfaces
(Springer Science and Business Media, New York, 1993).

[28] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.028003, which in-
cludes Refs. [23–27], for more details about the SF-SCF
method.

[29] S. M. Oversteegen, P. A. Barneveld, J. V. Male, F. A. M.
Leermakers, and J. Lyklema, Phys. Chem. Chem. Phys. 1,
4987 (1999).

[30] S. S. Chern, Ann. Math. 45, 747 (1944).
[31] W. Fenchel, J. Lond. Math. Soc. s1-15, 15 (1940).
[32] T. J. Willmore, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)

B 11, 493 (1965).
[33] F. C. Marques and A. Neves, Ann. Math. 179, 683 (2014).
[34] See https://wp.me/p7KmNt-9C.
[35] B. Smit, P. A. J. Hilbers, K. Esselink, L. A.M. Rupert, N.M.

VanOs, andA. G. Schlijper,Nature (London)348, 624 (1990).

PHYSICAL REVIEW LETTERS 120, 028003 (2018)

028003-5

https://doi.org/10.1021/j100210a011
https://doi.org/10.1021/j100210a011
https://doi.org/10.1038/s41467-017-01420-8
https://doi.org/10.1038/s41467-017-01420-8
https://doi.org/10.1038/s41467-017-01918-1
https://doi.org/10.1126/science.273.5276.768
https://doi.org/10.1103/PhysRevLett.57.491
https://doi.org/10.1103/PhysRevLett.57.491
https://doi.org/10.1038/263123a0
https://doi.org/10.1209/0295-5075/5/8/012
https://doi.org/10.1103/PhysRevE.57.6825
https://doi.org/10.1103/PhysRevE.57.6825
https://doi.org/10.1103/PhysRevLett.98.258103
https://doi.org/10.1103/PhysRevLett.60.1966
https://doi.org/10.1103/PhysRevLett.85.337
https://doi.org/10.1103/PhysRevE.53.3900
https://doi.org/10.1103/PhysRevE.53.3900
https://doi.org/10.1063/1.473888
https://doi.org/10.1063/1.473888
https://doi.org/10.1103/PhysRevLett.62.1134
https://doi.org/10.1103/PhysRevLett.62.1134
https://doi.org/10.1103/PhysRevLett.92.116101
https://doi.org/10.1103/PhysRevLett.92.116101
https://doi.org/10.1039/c0sm00876a
https://doi.org/10.1063/1.4801327
https://doi.org/10.1103/PhysRevE.81.021915
https://doi.org/10.1103/PhysRevE.81.021915
https://doi.org/10.1021/ma00173a041
https://doi.org/10.1021/ma00073a010
https://doi.org/10.1021/ma00073a010
https://doi.org/10.1021/ma00036a016
https://doi.org/10.1021/ma00036a016
https://doi.org/10.1021/j100475a012
https://doi.org/10.1021/j100475a012
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.028003
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.028003
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.028003
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.028003
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.028003
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.028003
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.028003
https://doi.org/10.1039/a906437k
https://doi.org/10.1039/a906437k
https://doi.org/10.2307/1969302
https://doi.org/10.1112/jlms/s1-15.1.15
https://doi.org/10.4007/annals.2014.179.2.6
https://wp.me/p7KmNt-9C
https://wp.me/p7KmNt-9C
https://doi.org/10.1038/348624a0

