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Using numerical simulations that mimic recent experiments on hexagonal colloidal ice, we show that
colloidal hexagonal artificial spin ice exhibits an inner phase within its ice state that has not been observed
previously. Under increasing colloid-colloid repulsion, the initially paramagnetic system crosses into a
disordered ice regime, then forms a topologically charge ordered state with disordered colloids, and finally
reaches a threefold degenerate, ordered ferromagnetic state. This is reminiscent of, yet distinct from, the
inner phases of the magnetic kagome spin ice analog. The difference in the inner phases of the two systems
is explained by their difference in energetics and frustration.
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Introduction.—Artificial spin ice (ASI) systems have
been attracting increasing interest as frameworks for
studying frustration or degeneracy and for revealing
emergent exotic behaviors [1–3]. Among the most studied
ASIs are nanoscale magnets arranged in square [1,4–9],
hexagonal [1,10–13], or other geometries [14–21]. Each
individual magnet behaves like a binary spin degree of
freedom and adopts, to a nearest-neighbor (NN) approxi-
mation, an ice-rule configuration that minimizes the
topological charge qn, defined as the absolute difference
between the n spins pointing in and no spins pointing out
of each vertex. This configuration can be ordered, as in
square ice [1,4], or it can be a disordered manifold with
nonzero entropy density. Moving beyond the NN approxi-
mation, inner phases and transitions appear within the
disordered ice manifold. In hexagonal ice, each vertex is
surrounded by vn ¼ 3 spins and the ice rule corresponds
to n ¼ 1, no ¼ 2 (qn ¼ 2n − vn ¼ −1) or n ¼ 2, no ¼ 1
(qn ¼ þ1). In disordered hexagonal or kagome ice, inner
phases corresponding to charge ordering (CO) within spin
disorder (the “spin ice II” or SI2 phase) and to long range
order (LRO) have been reported [22,23] and experimen-
tally investigated [10,12,24,25].
Another interesting class of ASIs that resemble water ice

consists of an array of double-well traps that each capture
one particle, as illustrated in Fig. 1. The traps are arranged
in a square or hexagonal ice geometry with vn ¼ 4 or vn ¼
3 traps, respectively, around each vertex, and the particle-
particle interactions are repulsive. Particle-based ASIs have
been studied numerically for colloids [26–32], Skyrmions
[33], and vortices in type-II superconductors [34], and have
been realized experimentally in superconductors [35–38]
and for paramagnetic colloids on grooved surfaces [39–41].
Particle-based ASIs can be described in the same way as

magnetic spin ices by defining a pseudospin σ⃗i lying along
the trap axis and pointing toward the particle [26,27,34].

Although the particle and magnetic ASIs differ greatly both
in energetics and frustration, both obey the ice rules at low
energy, though for different reasons [27]. Consider for
definiteness vn ¼ 3 magnetic and colloidal hexagonal or
kagome ASIs, which both obey the ice rule through a local
minimization of qn. The NN energy En of magnetic dipoles
impinging into a vertex is proportional to the square of
the charge, En ∝ q2n. Thus the ice rule (qn ¼ �1 allowed
and qn ¼ �3 forbidden) is enforced locally by energy

FIG. 1. Schematic of the particle-based hexagonal artificial spin
ice. Each double well trap (light grey) holds a single para-
magnetic colloid (dark grey dots). The hexagonal plaquettes
contain arrows indicating the pseudospin σ⃗i of the adjacent traps,
colored according to the chirality χi ¼ þ1 (clockwise, dark grey)
or χi ¼ −1 (counterclockwise, white). The plaquettes are colored
according to their net spin chirality χ: clockwise (red), counter-
clockwise (blue), or achiral (grey). Colored disks are guides to the
eye and indicate the vertex type: n ¼ 0 or 0-in (dark blue), n ¼ 1
(light blue), n ¼ 2 (light red), and n ¼ 3 (dark red); arrows (of
length 2) or dots (of length 0) on the disks indicate the vectorial
sum s⃗i of the pseudospins adjacent to each vertex.
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minimization. For the colloids, En ∝ nðn − 1Þ, and the
vertex energetics favors large negative charges (qn ¼ −3).
Thus the ice rule obeying particle-based ASI minimizes the
global energy of the system rather than the local energy, as
in its magnetic counterpart [27].
An open question is how far the similarities between the

particle-based and magnetic ASIs extend. Here we explore
the types of ice rule states that occur in particle-based ASI
and how they relate to the CO and LRO of magnetic
systems. We simulate paramagnetic colloids held gravita-
tionally in double-well etched grooves, similar to those
used in recent experiments [40,41]. The colloids repel each
other with interaction ∝ B2=r4 when a perpendicular
magnetizing field B⃗ is applied. The strength of the spin-
spin interactions can be tuned easily by varying B⃗,
permitting us to map different ice phases. For weak
interactions the system is in a paramagnetic state containing
qn ¼ �3 charges, but we find that for higher interaction
strengths the system enters an ice-rule phase with no qn ¼
�3 charges. As B⃗ is increased further, a charge ordering
regime emerges in which the colloids remain disordered,
and the order gradually increases until the system forms
domains of threefold symmetric ferromagnetic order.
Simulation.—We conduct Brownian dynamics simula-

tions of the particle-based hexagonal ASI comprised of
Np ¼ 2700magnetically interacting colloids with diameter
1 μm placed in an array of Nt ¼ 2700 etched double-well
grooves. There are Npl ¼ 900 hexagonal plaquettes of side
ah ¼ 3 μm arranged on a 15 × 20 lattice with dimensions
of 135 μm × 155.88 μm, and we use periodic boundary
conditions in both the x and y directions. Each plaquette is
surrounded by six double-well traps of length at ¼ 2.8 μm,
as illustrated in Fig. 1, giving a total of Nv ¼ 1800 vertices.
A confining spring force Fc1 acts perpendicularly to the
elongated direction of the trap, and each end of the trap
contains a confining parabolic attractive well exerting force
Fc2 with a spring constant of 2.2 pN=μm representing the
gravitationally induced attraction. A repulsive harmonic
barrier Fh of magnitude 2.11 pN corresponding to a barrier
of height 3.32 μm separates the attractive wells. The
combined substrate forces are written as Fs ¼ Fc1þ
Fc2 þ Fh. Magnetization of the colloids in the z direction
produces a repulsive particle-particle interaction force
FppðrÞ ¼ Acr̂=r4 with Ac ¼ 3 × 106χ2mV2B2=ðπμmÞ for
colloids a distance r apart. Here χm is the magnetic
susceptibility, μm is the magnetic permeability, V is the
colloid volume, B is the magnetic field in mT, and all
distances are measured in μm. For the paramagnetic
colloids in Refs. [40,41], this gives jFppj ¼ 6.056 pN
for r ¼ 3 μm at B ¼ 40 mT, the maximum field we
consider. The dynamics of colloid i are obtained using
the following discretized overdamped equation of motion:

1

μ

Δri
Δt

¼
ffiffiffiffiffiffiffiffiffi

2

DΔt

r

kBTN½0; 1� þ Fi
pp þ Fi

s; ð1Þ

where the diffusion constantD¼36000μm2=s, the mobility
μ ¼ 8.895 μmpN=s, the simulation time step Δt ¼ 1 ms,
and where N[0,1] is a Gaussian distributed random number
with mean 0 and variance 1. The first term on the right is a
thermal force consisting of Langevin kicks of magnitude
FT ¼ 0.95 pN corresponding to a temperature of t ¼ 20 °C.
Each trap is initially filled with a single colloid placed in a
randomly chosen well. We increase B linearly from B ¼
0 mT toB ¼ 40 mT, consistent with the experimental range
[39]. Unless otherwise noted, we average the results over
100 simulations performed with different random seeds.
Around a hexagonal plaquette, there is a pseudospin to
the right and left of each vertex. Considering the set of right
pseudospins, we define the pseudospin chirality χi ¼ þ1
if the pseudospin is pointing toward the vertex and
−1 otherwise. The net chirality of each plaquette is
χ ¼ P

6
i¼1 χi=6, as illustrated in Fig. 1. We assign a chirality

direction (clockwise or counterclockwise) to each plaquette
based on the sign of χ. In the case of achiral χ ¼ 0 plaquettes,
when possiblewe assign an effective biasing field F⃗b to each
plaquette representing the in-plane biasing field that would
have produced the same spin ordering.
Results.—In Fig. 2, we illustrate the four phases

exhibited by the system. In the paramagnetic (PM) phase,
shown at B ¼ 0 mT in Fig. 2(a), qn ¼ �3 charges are
present. At B ¼ 13.2 mT in Fig. 2(b), we find a charge-
free (ICE) phase containing no qn ¼ �3 charges. Here all
the vertices obey the ice rules but there is no CO or
ferromagnetic ordering. In Fig. 2(c) at B ¼ 24 mT, a
partially charge ordered (PCO) phase appears in which
the vertices obey the ice rules and some CO arises in the
form of n ¼ 2 vertices surrounding n ¼ 1 vertices and
vice versa. At B ¼ 40 mT in Fig. 2(d), there is pro-
nounced CO and chiral plaquettes only exist along grain
boundaries. This ferromagnetic (FM) phase contains two
domains with net effective biasing field F⃗b ≠ 0. Since
there are six possible F⃗b orientations, the FM phase often
exhibits domains and grain boundaries.
In Fig. 3(a) we plot the fraction Nn=Nv of ice rule

obeying vertices with qn ¼ �1 vs B, and in Fig. 3(b) we
show the corresponding fraction of qn ¼ �3 vertices vs B.
For B ¼ 0 mT when the colloids do not interact with each
other, the vertices are randomly distributed, giving
N0=Nv ¼ N3=Nv ¼ 1=8 and N1=Nv ¼ N2=Nv ¼ 3=8.
As B increases, there is a transition to N0=Nv ¼ N3=Nv ¼
0 near B ¼ 10 mT when the system enters an ice rule
obeying state.
We introduce a charge order parameter c ¼

− 1
Nv

PNv
i¼0½ð1=qinÞ

P

i∈∂iq
j
n� to measure the charge-charge

correlation among NN vertices. In a random system,
c ¼ 1=3, while c ¼ 1 in a CO state. In Fig. 3(c) we plot
c vs B showing that in the PM phase, c ¼ 1=3, and at the
PM-ICE transition, c drops. In the ICE phase
(10 mT < B < 15 mT), c < 0.4 and the ice rule is obeyed.
For 15 mT < B < 30 mT in the PCO phase, c gradually

PHYSICAL REVIEW LETTERS 120, 027204 (2018)

027204-2



increases, saturating to c ¼ 0.9 in the FM phase for
B > 30 mT. Here c < 1.0 since the FM grain boundaries
disrupt the CO, as shown in Fig. 2(d) for B ¼ 40 mT. In
magnetic ASI, a SI2 phase appears when the system has
CO but no spin ordering.
We plot the fraction Nχ=Npl of hexagonal plaquettes

with chirality χ vs B in Fig. 4(a). The number of
pseudospins with χi aligned in the majority direction is
4 for χ ¼ �1=3, 5 for χ ¼ �2=3, and 6 for χ ¼ �1, while
the χ ¼ 0 plaquettes are achiral. At the ICE-PCO crossover,
N0=Npl increases, saturating to N0=Npl ≈ 0.9 in the FM

phase. In Fig. 4(b) we plot the total chirality fraction X ¼
N−1

pl

PNpl

i¼1 jχij vs B. In the LRO chiral phase in magnetic
ASI [22,23,42], X increases from X ¼ 5=16 (random) to
X ¼ 2=3 (LRO). In Fig. 4(b), X ¼ 5=16 in the PM phase,
reaches a local maximum in the ICE phase, and is nearly
zero in the FM phase. These results indicate that the ICE
and PCO ice rule obeying phases in hexagonal colloidal
ASI differ in nature from the SI2 and LRO phases of
magnetic ASI.

To characterize the FM spin ordering, we measure the
vertex spin-spin correlation for neighboring vertices,
g ¼ hs⃗i · s⃗ji, where the vertex spin s⃗i ≡P

3
j¼1 σ⃗j, the

sum of the surrounding pseudospins. Here, s⃗i points in
one of the three lattice directions and js⃗ij ¼ 2 or 0. As FM
order appears, g increases. The average vertex spin Sv ¼
N−1

v
PNv

i¼0 js⃗ij saturates to Sv ¼ 2 once all the qn ¼ �3
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FIG. 3. (a) Fraction of ice rule obeying qn ¼ �1 vertices
Nn=Nv vs B, where Nn is the number of vertices with n “in”
pseudospins. Blue: n ¼ 1, qn ¼ þ1; red: n ¼ 2, qn ¼ −1. PM:
paramagnetic; ICE: charge free; PCO: partially charge ordered;
FM: ferromagnetic. Labels A to D indicate the B values illustrated
in Fig 2. Dotted lines indicate approximate transition locations;
the ICE-PCO crossover field is not well defined. (b) Fraction of
qn ¼ �3 charged vertices vs B. Blue: n ¼ 0 with qn ¼ −3; red:
n ¼ 3 with qn ¼ þ3. The charged vertices disappear above B ¼
10 mT at the PM-ICE transition. (c) Charge ordering parameter
c vs B.
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χ ¼ 0. The following pairs of curves overlap: χ ¼ �1=3,
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disappears. (b) Total chirality X vs B.

FIG. 2. Images of a small portion of the sample colored as in
Fig. 1, where the pseudospin arrows are replaced by an arrow
indicating the plaquette chirality direction or effective biasing
field Fb for chiral and achiral plaquettes, respectively. Dots
indicate that no Fb value can be assigned. (a) Paramagnetic (PM)
phase at B ¼ 0 mT. Large red and blue disks indicate qn ¼ �3
vertices with n ¼ 3 and n ¼ 0, respectively. (b) Charge-free
(ICE) phase at B ¼ 13.2 mT containing only qn ¼ �1 vertices.
(c) Partially charge ordered (PCO) phase at B ¼ 24 mT with
domains of charge and spin ordered vertices and plaquettes.
(d) Ferromagnetic (FM) phase at B ¼ 40 mT containing a grain
boundary. The system contains a second grain boundary with
complementary chirality (not shown).
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charges disappear at the PM-ICE transition, as shown in
Fig. 5(a). We plot the total magnetization M ¼
N−1

v jPNv
i¼0 s⃗i j vs B in Fig. 5(b). In the PM and ICE phases,

M ¼ 0, but above B ¼ 20 mT, M increases, saturating in
the FM phase. The plot of g vs B in Fig. 5(c) shows a
similar saturation of g in the FM phase. There are six
possible FM orientations, so domains can form as shown in
Fig. 2(d) [43], with an average size that increases as the rate
of change of B decreases. It is possible for the FM domains
to be arranged such that Sv ¼ 0, similar to what is observed
in a FM material that contains ordered domains but has no
net magnetization.
Discussion.—Although an ice manifold forms due to NN

vertex energetics, its inner phases are typically driven by
next-NN interactions [24]. In magnetic kagome ASI, an
anisotropic dipolar law governs the long range interactions
between in-plane spins, and it can be shown through
multipole expansion that CO arises from the mutual
Coulomb attraction of oppositely charged vertices. The
full dipolar interaction thus produces the LRO, and the long
range interaction tail generates the inner phases. In contrast,
our colloids interact isotropically through an inverse-cube
repulsion, and the phases arise not from local energy
minimization, but from an emergent, collective behavior.
To understand the CO, consider the interaction of two

adjacent ice rule vertices with n ¼ n1 and n ¼ n2.
Approximating the n colloids at each vertex as a composite
object located at the vertex center gives a vertex-vertex
interaction energy of Evv ¼ n1n2B2=a3h, which is mini-
mized when n1 ¼ n2 ¼ 1, or when each vertex has
qn ¼ −1. The local intervertex interaction disfavors the
formation of a CO state, so both the CO and the ice
manifold in colloidal ASI result from topologically con-
strained, global energy minimization, since it is impossible

for all the vertices to have qn ¼ −1. Starting from a CO
state of the type shown in Fig. 1(d), any rearrangement that
creates a pair of qn ¼ −1 charges lowers the energy locally
by −B2=a3h, but also creates a nearby pair of qn ¼ 2 charges
with a local energy increase of 3B2=a3h, giving a net energy
increase of 2B2=a3h.
The LRO can be viewed as an ordering of emergent

dimer spins. To establish an analogy between our system
and the magnetic ASI, we replace each trap with a double
occupancy trap plus a dumbbell of negative and positive
charges, written symbolically as ,
where represents a “negative” colloid. In the thermody-
namic limit, the energetics are determined by the inter-
action between the spins , exactly as in magnetic ASI,
with no contribution from the double occupancy back-
ground. The LRO differs from that of magnetic ASI
because the dimer spin interaction originates from the
colloidal interactions. For ideal dipoles this leads to
Eσ⃗1;σ⃗2 ∝ ½σ⃗1 · σ⃗2 − 5ðσ⃗1 · r⃗12Þðσ⃗2 · r⃗12Þ�=r512. This is similar
to the magnetic dipolar interaction, but with a 5 in the
exponent and inner coefficient, which enhances the ferro-
magnetic coupling and permits the development of ferro-
magnetic LRO, as described by the “minority spin”
argument of Ref. [23] using a different interaction. If at ¼
ah the colloids coalesce in the vertex, producing CO but not
LRO. Thus, the separation of the CO and LRO phases
increases as at=ah → 1.
Conclusion.—We observe inner phases within the ice

manifold of hexagonal colloidal artificial spin ice using a
simulation that faithfully mimics experiment. These phases
originate from interactions between non-nearest neighbors,
rather than simple vertex energetics, and disappear for
short-ranged interactions, explaining why they were not
observed previously. Both the inner phases in disordered
colloidal systems and the ice manifold of colloidal artificial
spin ice emerge from global collective behaviors, rather
than from the local energy minimization found in magnetic
kagome ice, producing many additional types of frustration
in the colloidal ice.

This work was carried out under the auspices of the
NNSA of the U.S. DOE at Los Alamos National
Laboratory, under Contract No. DE-AC52-06NA25396.
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