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A second-order topological insulator in d dimensions is an insulator which has no d − 1 dimensional
topological boundary states but has d − 2 dimensional topological boundary states. It is an extended notion of
the conventional topological insulator. Higher-order topological insulators have been investigated in square
and cubic lattices. In this Letter, we generalize them to breathing kagome and pyrochlore lattices. First, we
construct a second-order topological insulator on the breathing Kagome lattice. Three topological boundary
states emerge at the corner of the triangle, realizing a 1=3 fractional charge at each corner. Second, we
construct a third-order topological insulator on the breathing pyrochlore lattice. Four topological boundary
states emerge at the corners of the tetrahedron with a 1=4 fractional charge at each corner. These higher-order
topological insulators are characterized by the quantized polarization, which constitutes the bulk topological
index. Finally, we study a second-order topological semimetal by stacking the breathing kagome lattice.
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Introduction.—A topological insulator (TI) in d dimen-
sions has d − 1 dimensional [ðd − 1ÞD] topological boun-
dary states according to the bulk-boundary correspondence
[1,2]. Recently, the concept was generalized to a higher-
order TI (HOTI) [3–11]. For instance, a second-order TI is
an insulator which has ðd − 2ÞD topological boundary
states but no ðd − 1ÞD topological boundary states.
Namely, the boundary of the second-order TI is an ordinary
TI. Similarly, a third-order TI is an insulator which has
ðd − 3ÞD boundary states but no ðd − 1ÞD or ðd − 2ÞD
boundary states. It implies that the boundary of the third-
order TI is the second-order TI. The HOTI is characterized
by the bulk topological index [4,8,9]. It belongs to a special
class of topological insulators to which the conventional
bulk-boundary correspondence is not applicable. It is
intriguing that there are several HOTIs previously consid-
ered to be trivial insulators. So far, HOTIs have been
studied for the square and cubic lattices [4–10].
In this Letter, we propose HOTIs on the breathing

kagome lattice and the breathing pyrochlore lattices.
They have attracted much attention in the context of the
spin system [12–20], and have been experimentally real-
ized [21–31]. The structures of the breathing kagome and
pyrochlore lattices are illustrated in Fig. 1. First, with
respect to the breathing kagome lattice [Fig. 1(b)], we find
no topological boundary states in the 1D geometry (i.e.,
nanoribbon) but find three topological boundary states in
the 0D geometry (i.e., triangle). A 1=3 fractional charge
emerges when we put one electron into the zero-energy
states. Second, with respect to the breathing pyrochlore
lattice [Fig. 1(e)], we find no topological boundary states in
the 2D and 1D geometries but find four topological

boundary states in the 0D geometry (i.e., tetrahedron). A
1=4 fractional charge emerges when we put one electron
into the zero-energy states. Finally, we construct a second-
order topological semimetal by stacking the breathing
kagome lattice.
In the present models, the bulk topological index is a

polarization, which is the integral of the Berry connection,
as in the previous models [4,8,9]. When the C3 and mirror

(a) (b) (c)ta = 0 tb = 0ta < tb

(d) (e) (f)ta = 0 tb = 0ta = tb

FIG. 1. Illustration of triangles made of the breathing kagome
lattice with (a) ta ¼ 0, (b) 0 < ta < tb, and (c) tb ¼ 0. A triangle
contains many small triangles. There are three isolated atoms at
the corner of the triangle for ta ¼ 0, while there are no isolated
atoms for tb ¼ 0. The size of the triangle is L ¼ 5. Illustration of
tetrahedrons made of the breathing pyrochlore lattice with
(d) ta ¼ 0, (e) ta ¼ tb, and (f) tb ¼ 0. A tetrahedron contains
many small tetrahedrons. There are four isolated atoms at the
corner of the tetrahedron for ta ¼ 0, while there are none for
tb ¼ 0. The size of the tetrahedron is L ¼ 5. See Fig. 5(b) for the
unit cell of the pyrochlore lattice (ta ¼ tb).
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symmetries are intact, it is quantized and distinguishes the
trivial and topological phases. Equivalently, the mismatch
between the Wannier center and the lattice site distin-
guishes the trivial and topological phases. Zero-energy
corner modes emerge in the topological phase.
Second-order TIs in the breathing kagome lattice.—We

consider a fermion model on the breathing kagome lattice.
The bulk Hamiltonian is given by

H ¼ −

0
B@

0 h12 h13
h�12 0 h23
h�13 h�23 0

1
CA; ð1Þ

with h12 ¼ ta þ tbe−iðkx=2þ
ffiffi
3

p
ky=2Þ, h13 ¼ ta þ tbe−ikx , and

h23 ¼ ta þ tbeið−kx=2þ
ffiffi
3

p
ky=2Þ, where we have introduced

two hopping parameters ta and tb corresponding to upward
and downward triangles, as shown in Fig. 1. We have taken
a gauge such that the ta terms contain no phase factor in the
unit cell. It is set tb > 0 without loss of generality. We
analyze the system by making four-step arguments.
(i) First, we examine the bulk band spectrum. The

dispersion relation reads [13]

E¼ taþ tb; −
taþ tb

2
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðt2aþ t2bÞ−6tatbþ8tatbF

q
;

ð2Þ

with F ¼ cos kx þ 2 cosðkx=2Þ cosð
ffiffiffi
3

p
=2Þky. There is a

flat band at E ¼ ta þ tb. The band gap closes at the K ¼
ð2π=3; 0Þ and K0 ¼ ð−2π=3; 0Þ points for ta ¼ tb [see
Fig. 2(e1)] and at the Γ ¼ ð0; 0Þ point for ta ¼ −tb [see
Fig. 2(b1)]. It is an insulator for ta=tb < −1 and
−1 < ta=tb < 1=2, while it is metallic for ta=tb > 1=2.
(ii) Second, we investigate nanoribbons [32] made of

the breathing kagome lattice, which corresponds to the
ðd − 1ÞD geometry with d ¼ 2. We show the band structure
in Fig. 2 for typical values of ta=tb. According to the
conventional bulk-boundary correspondence, the bulk must
be a trivial insulator [33] both for ta=tb < −1 and
−1 < ta=tb < 1=2. However, this is not the case, as we
now show.

(iii) Third, we investigate nanodisks [34] made of
the breathing kagome lattice, which corresponds to the
ðd − 2ÞD geometry with d ¼ 2. As a nanodisk respecting
the C3 and mirror symmetries, we consider a triangle
containing many small triangles whose directions are
opposite, as illustrated in Figs. 1(a)–1(c). We define the
size L of the triangle by the number of small triangles along
one edge at tb ¼ 0 [see Fig. 1(c)]. By using this definition,
there are 2L atoms at the boundary and 3LðLþ 1Þ=2 atoms
in total. We show the energy spectrum as a function of ta=tb
for −1.5 < ta=tb < 1.5 for L ¼ 20 in Fig. 3. The energy
spectrum changes smoothly by changing ta=tb smoothly.
Zero-energy states emerge for −1 < ta=tb < 1=2. We show
the square root of the local density of states of the zero-
energy states in Fig. 3(b). It is well localized at the three
corners of the triangle. The phenomenon is similar to the
case of the square lattice with dimerized hoppings [4],
where four corner atoms are isolated.
The system is exactly solvable at ta ¼ 0 and tb ¼ 0,

where we may calculate the energy spectrum analytically.
On one hand, when ta ¼ 0, there are three isolated atoms,
L − 1 dimers and ðL − 1ÞðL − 2Þ=2 trimers. Isolated atoms
have zero energy, the dimers have the energy �ta and the
trimers have the energy −2ta and two fold ta. As a result,

FIG. 2. Band structure of breathing kagome lattices with (a1) ta=tb ¼ −1.5, (b1) ta=tb ¼ −1, (c1) ta=tb ¼ −0.25, (d1) ta=tb ¼ 0.25,
(e1) ta=tb ¼ 1, and (f1) ta=tb ¼ 1.5. The horizontal axes are kx and ky. (a2)–(f2) The corresponding band structure of nanoribbons, where
the horizontal axis is k. In each figure, two red curves represent boundary modes while a cyan line represents a perfect flat band belonging
to the bulk. Although the nanoribbon spectrum indicates that the bulk must be a trivial insulator for (c1) and (d1), it is actually a HOTI.

(b)(a)

FIG. 3. (a) Energy spectrum of the trianglemade of the breathing
kagome lattice with L ¼ 20. The horizontal axis is ta=tb. There
emerge zero-energy states (marked in red) for −1 < ta=tb < 1=2.
They are topological boundary states. (b) The square root of the
local density of states

ffiffiffiffi
ρi

p
for the triangle with L ¼ 5 and

ta=tb ¼ 1=2. The amplitude is represented by the radius of the
spheres. The local density of states becomes arbitrarily small except
for the three corners for L ≫ 1.
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there are three zero-energy states, LðL − 1Þ=2 energy
levels with E ¼ ta and ðL − 1ÞðL − 2Þ=2 energy levels
with E ¼ −ta. On the other hand, when tb ¼ 0, there are
LðLþ 1Þ=2 trimers and there are no isolated atoms and
dimers, implying that the zero-energy states do not appear.
Our numerical analysis shows that the zero-energy states
emerge for −1 < ta=tb < 1=2.
We now argue that these zero-energy states are topo-

logical boundary states. We focus on the system at ta ¼ 0.
In this case, the boundary of the breathing kagome lattice is
detached completely from the bulk and forms a 1D
dimerized chain [see Fig. 1(a)]. It is described by the
Su-Schrieffer-Heager (SSH) model. Since the SSH model
describes a TI, we conclude that the boundary of the
breathing kagome lattice is a TI at ta ¼ 0. Since the energy
spectrum at ta ≠ 0 is adiabatically connected to that at
ta ¼ 0, the zero-energy states are topological boundary
states even for ta ≠ 0.
As shown in Fig. 3(b), the local density of states is

separated equally in the three corners. When we put one
electron into the zero-energy states, the 1=3 fractional
charge appears at the three corners of the triangle. This is an
extension of the 1=2 fractional charge in the SSH model
describing a Polyacetylene [35].
(iv) Finally, we show the existence of the bulk topo-

logical index characterizing the HOTI. In the case of the
SSH model, the polarization px along the x axis is the bulk
topological index, which is protected by the mirror sym-
metry along the x direction. We generalize it into a higher
dimension [4,8,9].
There are three mirror symmetries for the breathing

kagome lattice. They are the mirror symmetries Mx with
respect to the x axis, and M� with respect to the two lines
obtained by rotating the x axis by �2π=3. The polarization
along the xi axis is the expectation value of the position

pi ¼
1

S

Z
BZ

Aid2k; ð3Þ

where Ai ¼ −ihψ j∂ki jψi is the Berry connection with

xi ¼ x, y and S ¼ 8π2=
ffiffiffi
3

p
is the area of the Brillouin

zone. The set of the polarization (px, py) is identical to the
Wannier center, which is the expectation value of the
Wannier function obtained by making the Fourier trans-
formation of the Bloch function [4,8,9]. Note that px is
defined mod 1 according to the formula (3) since it changes
by an integer under gauge transformation. Similarly, we
obtain the polarization p� ¼ −px=2�

ffiffiffi
3

p
py=2 along the

other lines.
By taking into account the C3 and mirror symmetries, we

analyze the quantity

P3 ¼ p2
x þ p2þ þ p2

− ¼ 3

2
ðp2

x þ p2
yÞ; ð4Þ

which measures the distance of the Wannier center from the
origin. It is protected by the three mirror symmetries. As we

shall soon see, we evaluate it as P3 ¼ 0 in the insulator
phase for ta=tb < −1while P3 ¼ 1=2 in the insulator phase
for −1 < ta=tb < 1=2. Consequently, the system on the
breathing kagome lattice is a second-order TI for
−1 < ta=tb < 1=2, where P3 is the bulk topological index.
Because of the mirror symmetry Mx, it follows that

px ¼ −px. Since px is defined mod 1, we solve this as
px ¼ 0 or 1=2. Similarly, we find that p� ¼ 0 or 1=2.
Hence, the bulk topological index P3 is quantized. It cannot
change its value unless the gap closes. Consequently, it
takes a constant value in each topological phase. It is
enough to calculate P3 at any one point in the topological or
trivial phase.
First, we set ta ¼ 0 to calculate P3 for the topological

phase (−1 < ta=tb < 1=2). The ground state wave function
is found to be ψ ¼ ð1; eiðkxþ

ffiffi
3

p
kyÞ=2; eikxÞt= ffiffiffi

3
p

, with which
we calculate the Berry connection as Ax ¼ 1=2 and
Ay ¼ 1=2

ffiffiffi
3

p
. It follows that px ¼ 1=2, pþ ¼ 0, p− ¼ 1=2,

and P3 ¼ 1=2. We note that the relation px ¼ pþ ¼ p−
does not hold since the C3 symmetry is broken by the
choice of the coordinate (see Fig. 4). The Wannier center
exists at the center ðpx; pyÞ ¼ ð1=2; 1=2 ffiffiffi

3
p Þ of the small

triangle. The mismatch between it and the lattice site
produces the zero-energy boundary states at the corner
in the topological phase [4,8,9].
Next, by choosing tb ¼ 0 for the trivial phase, the

wave function is given by ψ ¼ ð1; 1; 1Þt= ffiffiffi
3

p
, and we find

Ax ¼ 0 and Ay ¼ 0, from which it follows that P3 ¼ 0.
Consequently, the Wannier center is on the lattice site (0, 0)
(see Fig. 4).
Third-order TIs in the breathing pyrochlore lattice.—We

proceed to investigate the third-order TI. A natural exten-
sion of the breathing kagome lattice into three dimensions
is the breathing pyrochlore lattice [Figs. 1(d)–1(f)]. The
Brillouin zone and the unit cell of the pyrochlore lattice are
shown in Fig. 5. The Hamiltonian is given by

H ¼ −

0
BBB@

0 h12 h13 h14
h�12 0 h23 h24
h�13 h�23 0 h34
h�14 h�24 h�34 0

1
CCCA; ð5Þ

FIG. 4. The Wannier centers in the topological and trivial
phases.

PHYSICAL REVIEW LETTERS 120, 026801 (2018)

026801-3



with h12 ¼ ta þ tbe−iðkxþkyÞ=2, h13 ¼ ta þ tbe−iðkyþkzÞ=2,
h14 ¼ ta þ tbe−iðkzþkxÞ=2, h23 ¼ ta þ tbe−iðkz−kxÞ=2, h24 ¼
ta þ tbe−ið−kyþkzÞ=24, and h34 ¼ ta þ tbe−iðkx−kyÞ=2. We
analyze the system by making four-step arguments.
(i) The bulk spectrum is given by the two perfect flat

bands [13], E ¼ ta þ tb, and

E ¼ −ta − tb �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2a þ t2b − tatb þ tatbG

q
; ð6Þ

with G ¼ cosðkx=2Þ cosðky=2Þ þ cosðky=2Þ cosðkz=2Þþ
cosðkz=2Þ cosðkx=2Þ. The band structure is shown along
the Γ-X-W-U-L-K-Γ line in Figs. 6(a1)–6(f1) for typical
values of ta=tb. The band gap closes at ta=tb ¼ �1. It is an
insulator for ta=tb < −1 and −1 < ta=tb < 1=2, while it is
metallic for ta=tb > 1=2.
(ii) We investigate thin films and triangular prisms made

of the breathing pyrochlore lattice, which correspond to the
ðd − 1ÞD and ðd − 2ÞD geometries with d ¼ 3. We show
their band structures in Figs. 6(a2)–6(f2) and 6(a3)–6(f3)
for typical values of ta=tb. According to the conventional
bulk-boundary correspondence, the bulk must be a trivial

insulator both for ta=tb < −1 and −1 < ta=tb < 1=2.
However, this is not the case, as we now show.
(iii) Next, we investigate tetrahedrons shown in Fig. 1(e),

which correspond to the ðd − 3ÞD geometry. A tetrahedron
contains many small tetrahedrons whose directions are
different, as illustrated in Figs. 1(d)–1(f). It has four
triangular faces made of the breathing kagome lattice.
We define the size L of the tetrahedron by the number of
small tetrahedrons along one edge at tb ¼ 0 [see Fig. 1(f)].
There are 2LðLþ 1ÞðLþ 2Þ=3 atoms in total. The energy
spectrum is given for L ¼ 9 in Fig. 7(a). As in the case of
the breathing kagome lattice, zero-energy states emerge for
−1 < ta=tb < 1=2. We show the square root of the local
density of states of the zero-energy states in Fig. 7(b). It is
localized at the four corners of the tetrahedron, where there
emerge 1=4 fractional charges.
We note that the system is exactly solvable for the special

cases of ta ¼ 0 and tb ¼ 0. On one hand, for ta ¼ 0, there
are four isolated atoms at the corners of the tetrahedron,
which contribute to the four zero-energy states. Addi-
tionally, there are 3ðL − 1Þ dimers, 3ðL − 1ÞðL − 2Þ=2
trimers and LðL − 1ÞðL − 2Þ=6 tetramers. On the other
hand, for tb ¼ 0, there are LðLþ 1ÞðLþ 2Þ=6 tetramers,
which lead to no zero-energy states. Our numerical
analysis shows that the zero-energy states emerge for
−1<ta=tb<1=2.
We argue that these zero-energy states are topological

boundary states. When ta ¼ 0, the 2D boundary is detached
completely from the bulk and each face forms a triangle
made of the breathing kagome lattice [see Fig. 1(d)]. We
have already shown that it possesses topological zero-
energy states localized at the corners. Since the energy
spectrum at ta ≠ 0 is adiabatically connected to that at
ta ¼ 0, the zero-energy states are topological boundary

(b)(a)

FIG. 5. (a) Brillouin zone of the pyrochlore lattice. Letters Γ, X,
W, U, L, and K represent high symmetry points. (b) Unit cell of
the pyrochlore lattice (ta ¼ tb).

FIG. 6. Band structure of breathing pyrochlore lattices along the Γ-X-W-U-L-K-Γ line. (a1) ta=tb ¼ −1.5, (b1) ta=tb ¼ −1, (c1)
ta=tb ¼ −0.25, (d1) ta=tb ¼ 0.25, (e1) ta=tb ¼ 1, and (f1) ta=tb ¼ 1.5. Cyan lines represent perfect flat bands belonging to the bulk.
(a2)–(f2) The corresponding band structure of a thin film, where the horizontal axis is momentum along the X-Γ-Y line. (a3)–(f3) The
corresponding band structure of a triangular prism, whose size of the triangle is L ¼ 9. There are no topological boundary states for thin
films and triangular prisms. Nevertheless, it is not a trivial insulator but a HOTI for (c1) and (d1).
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states even for ta ≠ 0. Namely, the zero-energy states found
in Fig. 7 are attributed to the zero-energy states in Fig. 3.
(iv) Finally, we discuss the bulk topological index. As in

the case of the breathing kagome lattice, since there are six
mirror symmetries, Mxþy, Myþz, Mzþx, Mx−y, My−z, and
Mz−x, we analyze the quantity

P6 ¼ p2
xþy þ p2

yþz þ p2
zþx þ p2

x−y þ p2
y−z þ p2

z−x

¼ 4ðp2
x þ p2

y þ p2
zÞ: ð7Þ

We now show that it is given by P6 ¼ 3 for the topological
phase and P6 ¼ 0 for the trivial phase. The breathing
pyrochlore lattice is a third-order TI for −1 < ta=tb < 1=2,
where P6 is the bulk topological index.
In the topological phase, the wave function for ta ¼ 0 is

given by ψ ¼ ð1; e−iðkxþkyÞ; e−iðkyþkzÞ; e−iðkzþkxÞÞt=2, from
which we obtain the Berry connection as Ax ¼ Ay ¼ Az ¼
1=2 and P6 ¼ 3. The Wannier center exists at the center
ð1=2; 1=2; 1=2Þ of the small tetrahedron.
On the other hand, in the trivial phase, the wave function

for tb ¼ 0 is given by ψ ¼ ð−1; 1; 1; 1Þt=2, from which
we obtain the Berry connection as Ax ¼ Ay ¼ Az ¼ 0

and P6 ¼ 0. The Wannier center exists at the lattice site
(0, 0, 0).
Second-order topological semimetals.—Recently, a

second-order topological semimetal was constructed by
stacking square lattices with dimerized hoppings [11]. It is
a 3D bulk semimetal where the gap closes linearly at two
points. An interesting feature is that there is no Fermi arc in
the ðd − 1ÞD geometry with d ¼ 3 (i.e., thin film with 2D
boundaries). However, 1D zero-energy boundary states
connecting the two gap closing points appear in the
ðd − 2ÞD geometry (i.e., square prism).
In a similar way, we can construct a second-order

topological semimetal by stacking the breathing kagome

lattice. By replacing ta ↦ ta þ tz cos kz in the Hamiltonian
(1), we obtain the Hamiltonian for the second-order topo-
logical semimetal. The band gap closes at ta þ tz cos kz ¼
−tb. There is no zero-energy state for the boundary, while
there are zero-energy states for the boundary of the boundary
for kz satisfying −1 < ðta þ tz cos kzÞ=tb < 1=2.
We have shown that the breathing kagome and pyro-

chlore lattices are HOTIs together with the emergence of
zero-energy corner modes. However, they may shift in
energy by a local potential at the corners due to the lack of
the chiral symmetry in the models. Nevertheless, the
emergence of the corner modes are protected by the C3

and mirror symmetries.
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