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Recently, a large negative longitudinal (parallel to the magnetic field) magnetoresistance was observed in
Weyl and Dirac semimetals. It is believed to be related to the chiral anomaly associated with topological
electron band structure of these materials. We show that in a certain range of parameters such a phenomenon
can also exist in conventional centrosymmetric and time-reversal invariant conductors, lacking topological
protection of the electron spectrum and the chiral anomaly. We also discuss the magnetic field enhancement
of the longitudinal components of the thermal conductivity and thermoelectric tensors.
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One can distinguish two types of magnetoresistance
depending on the mutual orientation of the current and
the magnetic field: transverse and longitudinal. If the
magnetic field is sufficiently small, the magnetoresistance
can be described by the quasiclassical Boltzmann kinetic
equation (see, for example, [1–5]). A change in the trans-
verse resistance due to a magnetic field can be related to the
fact that electrons experience the Lorentz force in that
direction. Since there is no Lorentz force in the direction
parallel to the magnetic field, the origin of the longitudinal
magnetoresistance is more complicated. Moreover, the
longitudinal magnetoresistance is absent in the approxima-
tion of a spherical Fermi surface and in the relaxation time
approximation [1]. Although no theorem was proven, so far
all results based on the conventional Boltzmann kinetic
equation correspond to positive longitudinal magnetoresist-
ance (see, for example, Refs. [5,6], and references therein).
Nielsen and Ninomiya [7] suggested a chiral anomaly-
related [8,9] mechanism of negative longitudinal magneto-
resistance (NLMR) in materials with massless Dirac and
Weyl electronic spectra, which recently attracted great
theoretical interest [10–13]. The calculations of Ref. [7]
were done in the ultraquantum limit at zero temperature and
in the casewhere the chemical potential is at the Dirac point.
However, in most existing Dirac and Weyl semimetals, the
chemical potential is located away from the Dirac points. In
this case, a quasiclassical description of the chiral anomaly-
relatedNLMRwas developed in Refs. [14,15]. It was shown
that the existence of strong NLMR requires a large ratio
between the chirality and transport relaxation times.
Recently, large NLMR was observed both in Weyl and in
Dirac materials (see, for example, Refs. [13,16–20]).
In Weyl semimetals, the gapless character of the

electron spectrum is protected by topology. In Dirac metals,
the massless Dirac points are protected only by the
crystalline symmetry. Therefore, a small lattice distortion
of a Dirac semimetal can open a gap in the electronic
spectrum, making it nontopological. Below, we consider

magnetoresistance in Dirac-type materials in which the
electron spectrum is either massless or has a small gap. The
existence of a small gap in a Dirac semimetal was reported
already in the first observation of NLMR in these materials
[16]. Furthermore, NLMR was observed in Weyl materials
in which the Weyl valleys merge into a single electron
pocket with zero net topological charge [21]. This implies
that the existence of massless Dirac points in the spectrum,
their topological protection, and the chiral anomaly are not
necessary ingredients of large NLMR.
In this Letter, we show that a negative contribution to the

longitudinal magnetoresistance and other longitudinal
magnetotransport phenomena exists even in conventional
centrosymmetric and time-reversal symmetric semiconduc-
tors and metals. However, for this contribution to dominate
the effect, a certain hierarchy of relaxation times should
take place.
To illustrate the origin of the effect, we consider a model

[22] where the energy gap Eg between the conduction and
the valence bands is significantly smaller than the energy
separation from other bands and the external potential VðrÞ
is smooth on the interatomic scale. In this case, the electron
dynamics may be described by the Dirac Hamiltonian (for a
recent review, see Ref. [23])

Ĥ ¼ up · στ3 þ Egτ1 þ VðrÞ: ð1Þ

Here, p ¼ −iℏ∇ − ðe=cÞAðrÞ [with AðrÞ being the vector
potential] is the kinematic momentum, Eg is half the band
gap, and σi and τi denote the Pauli matrices that act in the
spin and chirality subspaces, respectively.
We focus on the typical situation in which the electron

chemical potential μ is larger than the gap Eg. In this
regime, electron transport may be described by two
equivalent approaches. The first one is based on the
quasiclassical kinetic equation, while in the second one
the free electron motion is described in terms of the Landau
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levels. Here we will use the latter approach. In a uniform
magnetic field B directed along the z direction, the energy
spectrum of Eq. (1) has the form (see, for example, Sec. 32
of Ref. [24])

ϵ2nðpzÞ ¼ E2
g þ u2p2

z þ
u2ℏ2

l2B
ð2nþ 1þ σÞ: ð2Þ

Here pz is the electron momentum along the magnetic field,
lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=jeBjp
is the magnetic length, n ¼ 0; 1; 2;…

labels Landau levels, and σ ¼ �1 is a spin index.
At Eg ¼ 0, the Hamiltonian (1) decouples into a sum of

Weyl Hamiltonians describing right- and left-handed chiral
fermions. As a result, the electronic states can be classified
by chirality (R and L), τ3ΨR ¼ ΨR and τ3ΨL ¼ −ΨL. All
Landau levels except the lowest one (n ¼ 0, σ ¼ −1) are
doubly degenerate. The electron states in these levels
consist of opposite chirality pairs. The spectrum of the
lowest Landau level consists of two nondegenerate linear
branches, ϵ0 ¼ �upz, formed by the states with opposite
chirality. As a result, in the presence of an electric field the
system exhibits the chiral anomaly [7–9]. The acceleration
of the electrons by the electric field creates a population
imbalance of electrons with different chirality. Since the
Hamiltonian Eq. (1) decouples into a pair of chiral (L and
R) Weyl Hamiltonians in the presence of an arbitrary
potential VðrÞ, scattering by disorder does not relax the
chirality imbalance. Therefore, even at full momentum
relaxation of the electron distribution with a given chirality,
there is a finite electric current proportional to the chirality
imbalance (chiral magnetic effect) [25,26]. In this approxi-
mation, the electrical conductivity is infinite.
At Eg ≠ 0, chirality is no longer conserved, as the second

term in Eq. (1), Egτ1, couples the Weyl fermions with
opposite chirality. However, the helicity operator α̂ ¼
p · σ=p still commutes with the Hamiltonian of the free
electron motion described by the first two terms in Eq. (1).
Thus, the states of the free electron motion may be
classified by the helicity eigenvalues, α ¼ �1 (at
Eg ¼ 0, the helicity of free electron states coincides with
the chirality up to the sign of the electron energy). Note that
this classification applies even in the presence of a
magnetic field, since the operator p · σ is still diagonal
in the basis of energy eigenstates. The quantity p in the
definition of helicity should be understood as the modulus
of the eigenvalue of this operator. The helicity content of
Landau level states is shown in Fig. 1. The states in the
doubly degenerate Landau levels come in opposite helicity
pairs, while the helicity of states in the nondegenerate
lowest Landau level is given by α ¼ sgnðpzÞ.
Although at Eg ≠ 0 there is no chiral anomaly, the

mechanism of longitudinal magnetoresistance is quite
similar to that due to the chiral anomaly. Namely, the
acceleration of electrons by the electric field directed along
B produces a helicity imbalance. The helicity imbalance in

turn produces an electric current even at full momentum
relaxation within a population of electrons with the same
helicity. In contrast to chirality, helicity is not conserved by
disorder scattering. Nevertheless, if the Fermi energy EF
strongly exceeds the gap Eg, the helicity relaxation rate is
parametrically small. As is shown in Supplemental Material
[27], in this regime the helicity relaxation time τhðεÞ
may be expressed in terms of the transport mean free time
τtrðεÞ as

τhðεÞ
τtrðεÞ

¼ ξ
4ε2

E2
g
≫ 1: ð3Þ

Here ξ is a numerical coefficient of the order of unity
which depends on the angular dependence of the impurity
scattering cross section. In the Born approximation, it is
given by Eq. (A7) in Supplemental Material [27]. Below,
we develop a theory of electron magnetotransport phenom-
ena in the leading approximation in τtr=τh.
In the regime τtr=τh ≪ 1, during a short time τtr the

electron distribution becomes isotropic in momentum and
becomes dependent only on the electron energy ε and
helicity α ¼ �1, i.e., takes the form nαðεÞ. Then the total
electron density n is given by

n ¼
X
α

Z
dϵνðϵÞnαðϵÞ; ð4Þ

where ναðϵÞ is the density of states with helicity α. In the
leading approximation in τtr=τh, the equations describing
electronic transport have the form (see Appendix B in
Supplemental Material [27])

∂tnαðεÞ ¼ −
∇ · jαðεÞ
ναðεÞ

−
kα

ναðεÞ
e2E · B
h2c

∂εn
ð0Þ
α ðεÞ

−
nαðεÞ − n−αðεÞ

τhðεÞ
þ Iinα fnαðεÞg; ð5Þ
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FIG. 1. Landau level spectrum of the Dirac equation in the
gapless case Eg ¼ 0 [panel (a)] and the gapped case [panel (b)].
All Landau levels except the lowest one are degenerate in helicity
and are shown by solid blue lines. The lowest Landau level is
nondegenerate. The helicity of electronic states in it is indicated
by the line style: Positive helicity states are shown by the green
dashed line, and negative helicity states by the black dash-dotted
line. The red horizontal line indicates the location of the chemical
potential.
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where h ¼ 2πℏ and kα ¼ α. The collision integral due to
inelastic electron-electron and electron-phonon scattering
processes is denoted by Iinα fnαðεÞg, and we expressed the
collision integral due to impurity scattering in terms of the
helicity relaxation time; see Eq. (A4) in Ref. [27]. Finally,

jαðεÞ ¼
ekαnαðεÞ

h2c
B ð6Þ

denotes the density of a particle current with helicity α per
unit energy [25,26]. The electric current j and the heat flux
jq may be expressed, respectively, as

j ¼ e
X
α

Z
dεjαðεÞ; jq ¼

X
α

Z
dεðε − μÞjαðεÞ;

ð7Þ

where μ is the chemical potential.
Note that in the limit τtrðεÞ=τhðεÞ → 0 both the

current jαðεÞ and the helicity pumping are associated only
with the lowest Landau level. Accordingly, the second term
in the right-hand side of Eq. (5) can be written as
ðdpz=dtÞ(νLðεÞ=νðϵÞ)(dϵ0ðpzÞ=dpz)(∂nðϵÞ=∂ϵ), where
ðdpz=dtÞ ¼ eEz and νLðεÞ ¼ ð1=2πhl2BÞ(dpz=dϵ0ðpzÞ) is
the density of states of the chiral Landau level [here the
derivative (dϵ0ðpzÞ=dpz) is evaluated at ϵ0ðpzÞ ¼ ε]. Then
elastic scattering redistributes the helicity imbalance cre-
ated by the electric field between the electron states with a
given energy in all Landau levels. This is the reason why
there is a density of states in the denominator in the first and
the second terms in the right-hand side of Eq. (5).
Equations (5)–(7) coincide with those obtained in

Refs. [14,15] for Weyl semimetals with a topologically
protected gapless electron spectrum. In Weyl semimetals,
kα ¼ �1 is given by the quantized monopole charge of the
Berry curvature flux, and Eq. (5) describes the chiral
anomaly. The above consideration shows that both the
generation of a helicity imbalance due to the acceleration of
electrons by the electric field, described by Eq. (5), and the
current proportional to helicity imbalance, Eq. (6), exist in
generic conductors with no topological protection of the
electron spectrum.
Below, we discuss longitudinal magnetotransport phe-

nomena: NLMR, enhancement of thermal conductivity, and
the thermoelectric effect by a magnetic field. Generally
speaking, linear response phenomena are characterized by
tensor transport coefficients. Equations (5)–(7), on the
other hand, describe only the “anomalous” contributions
to the transport coefficients which affect only the zz
components of the tensors. Here ẑ is the direction of the
magnetic field.
Using Eq. (5) and assuming that nαðεÞ¼nFðεÞþδnαðεÞ,

where nFðεÞ ¼ ½eðε−μÞ=TðrÞ þ 1�−1 is the locally equilibrium
Fermi distribution function, we get

Iinα fnαðεÞg ¼ δnαðεÞ − δn−αðεÞ
τhðεÞ

þ ekαðeE − ε−μ
T ∇TÞ · B

ναðεÞh2c
∂εnFðεÞ: ð8Þ

Note that, although both terms in the right-hand side are
odd in kα, their effect on the nonequilibrium distribution
function is drastically different. Only the first term creates
the helicity imbalance, whereas the second term creates an
energy imbalance between the electron populations with
different helicities. The inelastic collisions relax this energy
imbalance but not the helicity imbalance. As a result, the
nonequilibrium distribution function may be written in the
form

δnαðεÞ¼
ekα½τeff ε−μT ∇T− τhðεÞeE� ·B

2ναðεÞh2c
dnFðεÞ
dε

: ð9Þ

Here 1=τeff is the effective rate of energy transfer between
the electron populations with opposite helicity. Treating the
inelastic collision integral in the relaxation time approxi-
mation, we may express it as

1=τeff ¼ 1=τh þ 1=τϵ; ð10Þ

where 1=τϵ is the inelastic relaxation rate.
Substituting Eq. (9) into Eqs. (6) and (7) and expressing

the electric current and energy flux densities in the form

�
j

jq

�
¼

�
σ̂ β̂

γ̂ ζ̂

��
E

∇T

�
; ð11Þ

we obtain the following expressions for the zz components
of the transport tensors:

σzz ¼
�
e2B
h2c

�
2
Z

dε

�
−
dnFðεÞ
dε

�
τhðεÞ
ναðεÞ

; ð12aÞ

βzz ¼
�
eB
h2c

�
2
Z

dε
eðε − μÞ

T
dnFðεÞ
dε

τeffðεÞ
ναðεÞ

; ð12bÞ

ζzz ¼
�
eB
h2c

�
2
Z

dε
ðϵ − μÞ2

T
dnFðεÞ
dε

τeffðεÞ
ναðεÞ

: ð12cÞ

By the Onsager symmetry principle, γzz ¼ −βzzT.
The electronic contribution to thermal conductivity κzz
may be expressed in terms of the electrical conductivity
σzz and other transport coefficients in Eq. (12) as [1]
κzz ¼ −ζzz − Tβ2zz=σzz. Since at high temperatures the
considered effects are small, we concentrate on the
low-temperature regime T ≪ μ. In this case, Eqs. (12)
simplify to
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σzzðμÞ ¼
�
e2B
h2c

�
2 τhðμÞ
νðμÞ ; ð13aÞ

ζzzðμÞ ¼ −
π2T
3e2

τeffðμÞ
τhðμÞ

σzzðμÞ; ð13bÞ

βzzðμÞ ¼ e
dζzzðμÞ
dμ

: ð13cÞ

Under the conditions specified above, the results in
Eq. (13) are valid not only for Weyl and Dirac materials but
also for conventional conductors. In the case of Weyl and
Dirac semimetals, these equations reproduce results
obtained in Refs. [14,15]. The difference between the
conventional time-reversal invariant and centrosymmetric
materials and Weyl semimetals is in value of the helicity
relaxation time τh. In noncentrosymmetric Weyl semimet-
als with a spin-nondegenerate electron spectrum, the large
value of τh=τtr may be associated with the fact that for a
smooth disorder potential their intervalley transitions asso-
ciated with a large momentum transfer are suppressed. In
conventional conductors, the large value of τh=τtr arises
from the large ratio of the Fermi energy to the band gap
Eg ≪ μ, as described by Eq. (3). Taking νðμÞ ¼ μ2=ℏ3u3,
we get

σzz
σD

∼
�
ℏueB
cμEg

�
2

∼
�
ℏωc

Eg

�
2

: ð14Þ

Here σD ¼ 2e2νD, with D ¼ u2τtr=3 being the intravalley
diffusion coefficient, is the Drude conductivity, and
ωc ∼ eBu=cμ is the cyclotron frequency. Equation (14)
may be considered as an upper bound estimate for the
magnitude of NLMR. The presence in the material of short-
range impurities, which cannot be described by Eq. (1),
decreases the magnitude of the effect.
Of course there are other, “conventional” contributions

to the longitudinal magnetoresistance associated with the
Fermi surface anisotropy (see, for example, Ref. [6] and
references therein). Typically, at a small magnetic field
these contributions to magnetoconductivity scale as
½σzzðBÞ − σð0Þ� ∼ χσð0ÞðωcτtrÞ2 and saturate at ωcτtr ∼ 1.
Here χ < 1 is a parameter characterizing the Fermi surface
anisotropy. Thus, the condition for Eq. (14) to dominate the
LMR is

χðEgτtr=ℏÞ2 < 1: ð15Þ
Even if this condition is not satisfied, the negative con-
tribution to the magnetoresistance, Eq. (14), can dominate
at high magnetic fields where the conventional contribution
saturates. In this case, the longitudinal magnetoresistance is
a nonmonotonic function of the magnetic field. We note
that a nonmonotonic B dependence of σzz at a low magnetic
field was observed in most experiments on Dirac and Weyl
metals.

In experiments on Dirac semimetals, the observed
magnetoconductance was a few times greater than the
Drude value of the conductivity at B ¼ 0. According to
Eq. (14), this may happen if ℏωc=Eg > 1. Note that in the
quasiclassical limit ℏωc ≪ μ. Then to have a big effect one
should have μ ≫ Eg.
We would like to point out an important physical differ-

ence between the expressions for the magnetoconductivity
σzz in Eq. (12a), on the one hand, and κzz and the thermo-
electric αzz in Eqs. (12b) and (12c), on the other hand. The
magnetoconductance in Eq. (12a) is controlled by the
helicity relaxation time τh, while the magnetic field depend-
ence of the thermoelectric coefficient and thermal conduc-
tivity are controlled by τeff, which is a combination of the
helicity relaxation time τh and the inelastic relaxation time τϵ.
Thus, according to Eq. (13b), the Wiedemann-Franz law is
violated at high temperatures where τeff ≪ τh. Furthermore,
despite the conventional form of Eq. (13c), theMott relation
also does not hold, βzzðμÞ ≠ −π2T=ð3eÞ∂μσzzðμÞ. The
aforementioned difference, and, consequently, the violation
of theWiedemann-Franz andMott relations, can be traced to
the difference in the physical processes which determine
magnetoconductance σzzðBÞ and the magnetic field depend-
ence of ζzzðBÞ and βzzðBÞ. The magnetoconductance is
controlled by the long relaxation time τh of helicity imbal-
anceat theFermi level,which is createdby theaccelerationof
the electrons in the lowest Landau level in the presence of the
electric field. This is similar to the chiral anomaly. As long as
T ≪ μ and τh slowly depends of the electron energy, the
temperature dependence of the negative longitudinal mag-
netoresistance is weak. This explains why NLMR was
observed up to relatively high temperatures. In contrast,
the temperature gradient does not create helicity imbalance
but only produces an energy imbalance between the electron
populations with opposite helicity. The relaxation of the
energy imbalance is governed by the time τeff , which at
τh > τϵ coincides with the inelastic relaxation time τeff ≈ τϵ.
As a result, the thermal conductivity and the thermoelectric
coefficient exhibit a strong temperature dependence. In the
“hydrodynamic” regimewhere τtr ≫ τϵ, the described above
contributions κzzðBÞ and αzzðBÞ become negligible com-
pared to the conventional contributions. Thus, the depend-
ence of the thermal conductivity and the thermoelectric
coefficient on the magnetic field is unrelated to the chiral
anomaly.
In conclusion, we have shown that positive contributions

to the parallel magnetoconductance σzzðBÞ, the magnetic
field-dependent parallel thermal conductivity, and the
thermoelectric coefficient βzzðBÞ can exist not only in
Weyl and Dirac semimetals but also in conventional
centrosymmetric conductors as well. We also would like
to mention that the magnetic field dependence of the sound
absorption coefficient exhibits similar properties [15].
We also expect that, similarly to the negative magneto-
resistance of pn junctions in Weyl semimetals [28], the
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magnetoresistance of pn junctions in Dirac semimetals
with a sufficiently small gap Eg will also be negative.
Our consideration focused on the quasiclassical regime

ℏu=lB ≪ μ. In the ultraquantum limit ℏu=lB ≫ μ, when
only the zeroth Landau level is occupied, the situation is
more complicated. In Weyl semimetals in the single particle
approximation, an expression for conductivity in this
regime was obtained in Ref. [7], σzz ∝ ðe2u=4πℏl2BÞτh.
A similar result can be obtained for degenerate Dirac metals
in the ultraquantum regime. The magnetic field dependence
of the longitudinal magnetoresistance in this regime is
controlled by the corresponding magnetic field dependence
of the helicity relaxation rate. The latter depends on the
type of impurities. Its evaluation is not essentially different
from the calculation of the backscattering rate in conven-
tional semiconductors in the ultraquantum limit. In the
context of conventional semiconductors in a quantized
magnetic field, there is also a strongly anisotropic con-
tribution to magnetoresistance, unrelated to the chiral
anomaly, which may become negative in the longitudinal
direction (see, for example, Refs. [29–33]). It is related to
the fact that in the presence of a smooth potential in a
quantized magnetic field the small angle scattering is
suppressed. An additional difficulty in interpreting mag-
netotransport measurements in the ultraquantum regime is
associated with the instability of the electron liquid with
respect to charge density wave formation, which drives the
system to the insulating state. In contrast, in the semi-
classical limit, the theoretical consideration of electron
transport is free of the aforementioned complications.
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