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We have conducted experimental measurements and numerical simulations of a precession-driven flow
in a cylindrical cavity. The study is dedicated to the precession dynamo experiment currently under
construction at Helmholtz-Zentrum Dresden-Rossendorf and aims at the evaluation of the hydrodynamic
flow with respect to its ability to drive a dynamo. We focus on the strongly nonlinear regime in which the
flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of
standing inertial waves arising from nonlinear self-interactions. We obtain an excellent agreement between
experiment and simulation with regard to both flow amplitudes and flow geometry. A peculiarity is the
resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional
plane. Kinematic simulations of the magnetic field evolution induced by the time-averaged flow yield
dynamo action at critical magnetic Reynolds numbers around Rmc ≈ 430, which is well within the range of
the planned liquid sodium experiment.
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Magnetic fields of celestial bodies like planets, moons,
or asteroids are ubiquitous in the Solar System with a wide
diversity of manifestations [1]. While it is undisputed that
these fields are generated by the conversion of mechanical
energy from the flow of an electrically conductive fluid,
there are various possibilities to drive the underlying fluid
motions. Usually, it is assumed that the flow in liquid
planetary cores is driven by thermocompositional convec-
tion [2], yet alternative approaches invoke mechanical
stirring by libration [3], tidal forcing [4], or precession
[5]. In particular, precession has been repeatedly proposed
as a source for the dynamo action of the ancient lunar
magnetic field [6] or the geodynamo [7]. Indeed, simu-
lations and experiments revealed that precession may excite
vigorous flows [8] which are supposed to drive a dynamo
[9]. Precessional forcing has become of great interest from
the experimental point of view, because it represents a
natural mechanism which allows an efficient driving of
conducting fluid flows on the laboratory scale without
making use of propellers or pumps [10]. At Helmholtz-
Zentrum Dresden-Rossendorf (HZDR), a precession
dynamo experiment is under development [11] which will
provide a flow of liquid sodium in a cylindrical cavity with
a magnetic Reynolds number of up to Rm¼ ΩcR2=η ≈ 700
(defined with the achievable angular velocity of the
cylinder Ωc ¼ 63 s−1, the radius R ¼ 1 m, and the mag-
netic diffusivity for liquid sodium η ¼ 0.09 m2=s). The
project is further motivated by previous precession experi-
ments conducted by Gans [12], who achieved an ampli-
fication of an applied magnetic field by a factor of 3 with a
device smaller by a factor of 8, and by numerical studies
yielding precession-driven dynamos in different geometries

with a critical magnetic Reynolds number ofOð103Þ [5,13].
However, so far numerical models of the planned experi-
ment have not shown conclusively that the achievable
magnetic Reynolds number will be sufficient to allow for
dynamo action [14,15].
In the present study, we address preparatory simulations

and flow measurements in a water experiment that repre-
sents a downscaled model of the planned sodium dynamo.
The results provide flow patterns and amplitudes in depend-
ence on the Reynolds number Re ¼ ΩcR2=ν and on the
relation of precession frequencyΩp to rotation frequencyΩc,
the Poincaré number Po ¼ Ωp=Ωc. Finally, the three-
dimensional velocity fields from the simulations are used
in kinematic dynamo models in order to estimate parameter
regimes that will be appropriate for dynamo action.
We conduct direct numerical simulations in the preces-

sion reference frame using the code SEMTEX [16]. In this
frame, the observer resides on the turntable following the
rotation around the precession axis, thereby watching the
spinning cylinder [Fig. 1(a)]. The flow is described by
the Navier-Stokes equation including a time-independent
term for the Coriolis force due to precession [17]:

∂
∂tuþ u∇u ¼ −∇P − 2Ωp × uþ ν∇2u: ð1Þ

Here, u is the incompressible velocity field, P the reduced
pressure, ν the viscosity, and Ωp the angular velocity of the
precessional motion. The flow obeys no-slip boundary
conditions for the poloidal components, ur ¼ uz ¼ 0,
whereas the azimuthal flow at the boundaries is pre-
scribed by uφ ¼ rΩc. Fluid velocities are measured using
Ultrasonic Doppler Velocimetry (UDV), which provides
instantaneous profiles of the velocity component in the
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direction of an ultrasonic beam [18,19] oriented parallel to
the cylinder axis. Four ultrasound transducers are fixed at
one end cap of the cylinder [Fig. 1(a)] and corotate with the
container, thus providing measurements in the cylinder
frame. This reference frame is well suited for flow
characterization in terms of eigenmodes of rotating flows,
which are the solutions of the linearized inviscid version of
Eq. (1). In a cylinder, these solutions are inertial waves, or
Kelvin modes, Ujðr; z;φ; tÞ ¼ ~ujðrÞeiðωjtþmφþkzÞ [20,21]
labeled by j, which abbreviates a triple index comprising
the azimuthal wave number m, the axial wave number k,
and a radial wave number index n. The last index counts the
roots of the dispersion relation for an inertial wave

ωjλjJm−1ðλjÞ þmð2 − ωjÞJmðλjÞ ¼ 0 with

ωj ¼
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð λj
2kπÞ

2
q ; ð2Þ

where Jm denotes the Bessel function of order m, and λj
plays the role of a radial wave number.
Precession causes a steady volume forcing with an odd

symmetry with respect to the equatorial plane. Therefore,
the primary response of the fluid is a flow with an azimuthal
wave number m ¼ 1 and an odd axial wave number k that
is stationary in the precession reference frame. If the
frequency of the corresponding eigenmode (ωj) exactly
matches the frequency of the forcing (Ωc), the mode
becomes resonant, and the linear inviscid approach for
the computation of the amplitude fails [23]. The resonance
condition delicately depends on the aspect ratio, and the
primary forced mode with the simplest possible structure,
i.e., m ¼ 1, k ¼ 1, and n ¼ 1 becomes resonant at
H=R ¼ 1.989 82, which is close to the geometry envisaged

for our planned experiment (H=R ¼ 2). In the present
study, the corresponding cylinder utilized in the water
experiment has radius R ¼ 163 mm and height
H ¼ 326 mm, and the angle between the rotation axis
and the precession axis is fixed at α ¼ 90°. Typical
measurements of a single UDV probe are shown in
Fig. 1(b) (top) in terms of the axial velocity versus time
and depth. The alternation of the sign of uz with the
periodicity of Ωc and the asymmetry with respect to the
equatorial plane illustrate the dominance of the m ¼ 1
component superposed by higher azimuthal modes (essen-
tially m ¼ 2). We find a very good agreement between
experiments and simulations [Fig. 1(b), central and bottom
panels]. For sufficiently large Po, the flow is concentrated
in the vicinity of the cylinder walls [Fig. 1(c)] and can be
decomposed into few large-scale modes. These modes
represent standing inertial waves in the precession refer-
ence frame, and time-dependent contributions only appear
as weak small-scale fluctuations (see movie in the
Supplemental Material [22]).
A quantitative analysis of the flow is done by decom-

posing axial profiles of uz in k-modes ∝ sinðπzk=HÞ,
which is the characteristic z dependence of the axial
component of an inertial wave in a cylinder with height
H [23,24]. In a second step, we take the individual k-modes
from this decomposition and apply a 2D Fourier trans-
formation in the azimuthal direction and in time, which
finally yields spectra that allow the identification of
individual modes labeled by ðm; kÞ. Typical spectra from
simulations at Re ¼ 104 and Po ¼ 0.1 are shown in
Fig. 2(a), which represents the signature of the primary
forced mode ðm; kÞ ¼ ð1; 1Þ and its first multiple ðm; kÞ ¼
ð2; 2Þ resulting from nonlinear self-interaction. For suffi-
ciently strong precession, the spectra of all ðm; kÞ-modes

(a) (b) (c)

FIG. 1. (a) Sketch of the experimental setup. The red dots denote the locations of the UDV probes in the water experiment, and the
arrows illustrate the propagation of the ultrasound signal. (b) Temporal evolution of the axial velocity uz at r ¼ 150 mm (top: UDV
measurements; center: simulations; bottom: comparison of simulations and experiments in the equatorial plane). (c) Isosurfaces showing
a snapshot of uz from simulations at Re ¼ 104 and Po ¼ 0.1. Blue (red) colors indicate flow in the negative (positive) direction (see
movie at Ref. [22] in the Supplemental Material for temporal evolution of uz).
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qualitatively look similar, with one single peak at ω ¼ 0
that corresponds to a standing inertial wave in the pre-
cession reference frame. The amplitudes of individual
modes, estimated from spectral peaks at ω ¼ 0, show that,
independent of Po, the flow is always dominated by the
primary forced mode ðm; kÞ ¼ ð1; 1Þ [Fig. 2(b), blue
curve]. A characteristic feature is the concise maximum
of the amplitude at Poc ≈ 0.09. Immediately following this
maximum, we find three phenomena that are intimately
connected: a strong and abrupt reduction of the amplitude
of the directly forced flow with ðm; kÞ ¼ ð1; 1Þ, a gradual
increase of higher modes that originate from nonlinear self-
interaction according to ðm; kÞ → ð2m; 2kÞ [Fig. 2(b), red
curve], and a sudden appearance of a nongeostrophic
axisymmetric flow with k even [Fig. 2(b), green curve].
The axisymmetric mode only exists with noteworthy
amplitude within a rather narrow band with a width ΔPo ∼
0.006 [Fig. 2(c)]. This axisymmetric mode is of interest
with regard to the dynamo problem because its geometric
pattern corresponds to a double roll structure [Fig. 3(a)]
similar to the mean poloidal flow in the von Kármán
sodium dynamo in which the flow was driven by two
opposite counterrotating impellers [25]. It is well known
that this flow can drive a dynamo at comparatively low Rm
[26] when the relation between toroidal and poloidal
components is of order unity. However, there are further
contributions to the axisymmetric flow in terms of a
geostrophic azimuthal circulation [Fig. 3(b)] directed
opposite to the solid body rotation which modifies this
relation in our model.
The experiments show that the basic flow properties

remain unchanged up to Re ¼ 105 except for the decrease
of the critical value Poc at which the previously discussed
phenomena emerge. The occurrence of the nongeostrophic
axisymmetric resonance is a robust feature which does not
disappear when increasing Re [Fig. 2(c)]. This mode can be
excited by interacting inertial waves according to
ðm; k;ωÞ → ð0; 2k; 0Þ [24]. However, this is unlikely with-
out the presence of singularities [27], so these interactions
must happen within no-slip boundary layers [28] or internal

shear layers [29]. A more descriptive explanation rests
upon the modification of the basic azimuthal circulation,
which for sufficiently large Po compensates the bulk fluid’s
solid body rotation. The azimuthal fluid motion opposite to

(a) (b) (c)

FIG. 2. (a) Fourier spectra for the ðm; kÞ ¼ ð1; 1Þ mode and for the strongest secondary mode ðm; kÞ ¼ ð2; 2Þ from simulations at
r ¼ 150 mm, Re ¼ 104, and Po ¼ 0.1. (b) Amplitude of the time-independent part of directly forced mode ðm; kÞ ¼ ð1; 1Þ, its multiple
ðm; kÞ ¼ ð2; 2Þ and the nongeostrophic axisymmetric mode ðm; kÞ ¼ ð0; 2Þ (Re ¼ 104, r ¼ 150 mm). (c) Relative amplitude of the
nongeostrophic axisymmetric mode ðm; kÞ ¼ ð0; 2Þ with respect to ðm; kÞ ¼ ð1; 1Þ. The solid curves in (b) and (c) denote results from
the water experiment, and the diamonds denote results from simulations.

(a)

(b)

(c)

FIG. 3. (a) Time-averaged axisymmetric velocity field at Re ¼
104 and Po ¼ 0.1. Colors denote uφ (without solid body rotation)
and arrows represent ur and uz. (b) Axial profile of uφ and uz at
r ¼ 150 mm. Grey curves represent temporal variations of
instantaneous profiles from simulations, and red curves show
the time average. The black curve in the bottom panel shows the
time-averaged profile obtained in the water experiment. (c) Radial
profiles of the time-averaged angular momentum including solid
body rotation from simulations at Re ¼ 104.
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the cylinder rotation can even become so strong that
eventually the Rayleigh criterion for stability of rotating
fluids may be violated by developing a negative radial
derivative of the angular momentum, i.e., ðd=drÞðuφrÞ < 0

[Fig. 3(c)], immediately leading to the formation of Taylor
vortices. Finally, the further increase of Po leads to the
breakdown of the large-scale structures into smaller scales,
which, at Re ≈Oð106Þ, corresponds to a transition into a
fully turbulent flow without significant large-scale contri-
butions [30].
In the following, we use the velocity fields obtained from

the hydrodynamic simulations, validated by UDV flow
measurements, as the basis for kinematic dynamo models.
We concentrate on the strongly precessing regime around
Po ≈ 0.1 so that the flow is determined by standing inertial
waves, which makes the time-averaged velocity field
appropriate for the application in kinematic simulations.
The flow field is further decomposed into separate azimu-
thal modes m ¼ 0, 1, 2 in order to carve out the impact of
the individual contributions on the dynamo. The temporal
evolution of the magnetic flux density B induced by a given
time-averaged flow ū of a conducting liquid is determined
by the induction equation

∂
∂tB ¼ ∇ × ðū × B − η∇ × BÞ: ð3Þ

With the ansatz Bðr; tÞ ¼ B0ðrÞeσt, the solution of Eq. (3) is
a linear problem with the real part of the eigenvalue σ
representing the magnetic field growth rate γ. We solve
Eq. (3) numerically with pseudovacuum boundary con-
ditions for the magnetic field, and the growth rates are
computed from the time evolution of the magnetic field.
Except for the velocity field at Po ¼ 0.1, the kinematic
models either show no dynamo or do so at best for magnetic
Reynolds numbers far above the values that will be
attainable in the planned dynamo experiment (e.g., Rmc ≈
5000 for Po ¼ 0.0875). Taking the time-averaged flow
field from hydrodynamic simulations at Re ¼ 104 and
Po ¼ 0.1, we find dynamos at much reduced Rm. The
kinematic growth rates for this particular case are shown in
Fig. 4, where we distinguish five different setups. We find
that neither the axisymmetric flow (m ¼ 0, orange curve)
nor the directly forced flow (m ¼ 1, green curve) alone are
capable of driving a dynamo. The latter was expected,
because the structure of the primary flow is too simplistic
for dynamo action [14]. The failure of the pure axisym-
metric flow to drive a dynamo confirms our previous
assumption of the inappropriate relation of axisymmetric
poloidal and toroidal flow components. However, when
summing up both contributions, we obtain dynamo action
at a critical magnetic Reynolds number Rmc ≈ 560 (blue
curve). This value decreases to Rmc ≈ 430 when further
including the m ¼ 2 modes (red curve), most probably
because this contribution, which is dominated by the

ðm; kÞ ¼ ð2; 2Þ mode, increases the breaking of the equa-
torial symmetry, which is beneficial for precession-driven
dynamos [5]. Other contributions with higher wave num-
bers are less important, and no significant further reduction
of Rmc is obtained when using the total time-averaged flow,
which yields Rmc ≈ 428 (black curve).
The water experiments indicate that the flow structure

does not change much when increasing Re (see Ref. [32] in
the Supplemental Material); albeit the corresponding
decrease of Poc does not follow a simple scaling law
(Fig. 2c). However, it is known from measurements of the
internal pressure that the sudden drop of the m ¼ 1 mode,
which constitutes the second criteria for Poc, only weakly
depends on Re if Re≳ 5 × 105 [30]. This is already
indicated in our experiments when increasing Re from
4 × 104 to 105. The width within which we observe the
axisymmetric mode (ΔPo ≈ 0.006) corresponds nearly
exactly to the width of the hysteresis found in Ref. [30]
around Re ∼Oð106Þ at a precession ratio comparable with
Poc in our experiments at Re ¼ 105. It seems likely that
both phenomena are closely connected, with the ðm; kÞ ¼
ð0; 2Þ mode being a precursor for the transition to the
turbulent state observed in Ref. [30]. In the limit of large Re
as they will occur in the liquid sodium experiment (up to
Re ≈ 108), we thus expect dynamo action to arise in
connection with the nongeostrophic axisymmetric mode
within a width of ΔPo ≈ 0.006 around Po not much smaller
than Poc in our experiments at Re ¼ 105.
Our results reveal a first promising—though narrow—

regime, defined by the presence of the axisymmetric mode,
within which we expect dynamo action in the planned
dynamo experiment. This is not a turbulent dynamo, since
there is no significant amount of turbulence as would result,

FIG. 4. Growth rates for combinations of various azimuthal
modes from the velocity field obtained at simulations at Re ¼ 104

and Po ¼ 0.1. The insert drawing depicts isosurfaces of the
magnetic energy density mapped with Bφ. In the precession
frame, the field structure propagates around the cylinder axis (see
movie at Ref. [31] in the Supplemental Material).
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for example, from the resonant collapse reported in
experimental studies of precessing flows with small nuta-
tion angles [33]. Our model rather constitutes a laminar
dynamo driven by few large-scale velocity modes, and
our simulations and measurements indicate that time-
dependent contributions remain weak even at the largest
Re, with the spectra always being determined by standing
inertial waves. This is in contrast to the flow in the VKS
dynamo, where the fluctuations are of the same order as the
mean flow. Instead, a comparison with the Riga dynamo is
more appropriate, in which a fully developed turbulence
arises on top of a mean flow [34], and calculations based on
the time-averaged flow field still provide good agreement
with the experiment [35], proving that the turbulent β effect
remains negligible for such flows.
So far, we have not considered more realistic magnetic

boundary conditions, like an insulating outer domain or the
finite conductivity of the container made of stainless steel,
which will be the focus of a future study. Preliminary
results from models including a thin outer layer with the
electrical conductivity reduced by a factor of 8 show an
increment of Rmc by roughly 10%, which is still well
within the capabilities of the planned facility.

This study has been conducted in the framework of the
project DRESDYN (DREsden Sodium facility for
DYNamo and thermohydraulic studies), which provides
the platform for the precession dynamo experiment at
HZDR. The authors further acknowledge support by the
Helmholtz Allianz LIMTECH and thank Bernd Wustmann
for the mechanical design of the experiment.
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namics 42, 143 (2006); F. Stefani, A. Gailitis, and G.
Gerbeth, Z. Angew. Math. Mech. 88, 930 (2008).

[11] F. Stefani, S. Eckert, G. Gerbeth, A. Giesecke, T. Gundrum,
C. Steglich, T. Weier, and B. Wustmann, Magnetohydro-
dynamics 48, 103 (2012).

[12] R. F. Gans, J. Fluid Mech. 45, 111 (1971).
[13] C.-C. Wu and P. Roberts, Geophys. Astrophys. Fluid Dyn.

103, 467 (2009); J. Ernst-Hullermann, H. Harder, and U.
Hansen, Geophys. J. Int. 195, 1395 (2013); Y. Lin, P. Marti,
J. Noir, and A. Jackson, Phys. Fluids 28, 066601 (2016).

[14] A. Giesecke, T. Albrecht, G. Gerbeth, T. Gundrum, and F.
Stefani, Magnetohydrodynamics 51, 293 (2015).
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Phys. Fluids 17, 117104 (2005).

[27] H. P. Greenspan, J. Fluid Mech. 36, 257 (1969).
[28] F. H. Busse, J. Fluid Mech. 33, 739 (1968).
[29] A. Tilgner, Phys. Rev. Lett. 99, 194501 (2007).
[30] J. Herault, T. Gundrum, A. Giesecke, and F. Stefani, Phys.

Fluids 27, 124102 (2015).
[31] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.120.024502 for anima-
tion of the three-dimensional structure of the magnetic
energy density mapped with the azimuthal field.

[32] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.024502 for flow
structure from UDV measurements up to Re ¼ 105.

PHYSICAL REVIEW LETTERS 120, 024502 (2018)

024502-5

https://doi.org/10.1007/s11214-010-9638-y
https://doi.org/10.1080/03091929508228992
https://doi.org/10.1080/03091929508228992
https://doi.org/10.1080/03091929.2012.682990
https://doi.org/10.1080/03091929.2012.682990
https://doi.org/10.1088/2041-8205/789/1/L25
https://doi.org/10.1088/2041-8205/789/1/L25
https://doi.org/10.1063/1.1852576
https://doi.org/10.1038/nature10564
https://doi.org/10.1038/nature10564
https://doi.org/10.1017/jfm.2013.524
https://doi.org/10.1017/jfm.2013.524
https://doi.org/10.1126/science.1246753
https://doi.org/10.1126/science.160.3825.259
https://doi.org/10.1080/03091929108227780
https://doi.org/10.1017/S0022112070000976
https://doi.org/10.1017/S0022112092002726
https://doi.org/10.1017/S0022112096002388
https://doi.org/10.1046/j.1365-246X.2003.01934.x
https://doi.org/10.1046/j.1365-246X.2003.01934.x
https://doi.org/10.1017/S0022112010004040
https://doi.org/10.1063/1.4874695
https://doi.org/10.1063/1.4871026
https://doi.org/10.1063/1.4916234
https://doi.org/10.1017/jfm.2015.524
https://doi.org/10.1088/1367-2630/17/11/113044
https://doi.org/10.1088/1367-2630/17/11/113044
https://doi.org/10.1103/PhysRevFluids.1.023602
https://doi.org/10.1103/PhysRevFluids.1.023602
https://doi.org/10.1007/s00348-012-1385-2
https://doi.org/10.1146/annurev-fluid-010814-014556
https://doi.org/10.1146/annurev-fluid-010814-014556
https://doi.org/10.1002/zamm.200800102
https://doi.org/10.1017/S0022112071003021
https://doi.org/10.1080/03091920903311788
https://doi.org/10.1080/03091920903311788
https://doi.org/10.1093/gji/ggt303
https://doi.org/10.1063/1.4954295
https://doi.org/10.1103/PhysRevE.84.016317
https://doi.org/10.1088/1367-2630/18/10/103019
https://doi.org/10.1016/j.jcp.2004.02.013
https://doi.org/10.1016/j.jcp.2004.02.013
https://doi.org/10.1023/A:1023332115179
https://doi.org/10.1016/0142-727X(86)90011-1
https://doi.org/10.1017/jfm.2014.371
https://doi.org/10.1017/jfm.2014.371
https://doi.org/10.1080/14786448008626912
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
https://doi.org/10.1017/jfm.2012.355
https://doi.org/10.1017/S0022112008000335
https://doi.org/10.1017/S0022112008000335
https://doi.org/10.1103/PhysRevLett.98.044502
https://doi.org/10.1103/PhysRevLett.98.044502
https://doi.org/10.1098/rspa.1989.0112
https://doi.org/10.1098/rspa.1989.0112
https://doi.org/10.1063/1.2130745
https://doi.org/10.1017/S0022112069001649
https://doi.org/10.1017/S0022112068001655
https://doi.org/10.1103/PhysRevLett.99.194501
https://doi.org/10.1063/1.4936653
https://doi.org/10.1063/1.4936653
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.024502


[33] A. D. McEwan, J. Fluid Mech. 40, 603 (1970); R. Manas-
seh, J. Fluid Mech. 265, 345 (1994).

[34] A. Gailitis, G. Gerbeth, T. Gundrum, O. Lielausis,
E. Platacis, and F. Stefani, C.R. Phys. 9, 721
(2008).

[35] A. Gailitis, O. Lielausis, S. Dement’ev, E. Platacis, A.
Cifersons, G. Gerbeth, T. Gundrum, F. Stefani, M. Christen,
H. Hänel, and G. Will, Phys. Rev. Lett. 84, 4365 (2000); A.
Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, and F. Stefani,
Phys. Plasmas 11, 2838 (2004).

PHYSICAL REVIEW LETTERS 120, 024502 (2018)

024502-6

https://doi.org/10.1017/S0022112070000344
https://doi.org/10.1017/S0022112094000868
https://doi.org/10.1016/j.crhy.2008.07.004
https://doi.org/10.1016/j.crhy.2008.07.004
https://doi.org/10.1103/PhysRevLett.84.4365
https://doi.org/10.1063/1.1666361

