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We demonstrate the effectiveness of using machine learning for model-free prediction of spatiotempor-
ally chaotic systems of arbitrarily large spatial extent and attractor dimension purely from observations of
the system’s past evolution. We present a parallel scheme with an example implementation based on the
reservoir computing paradigm and demonstrate the scalability of our scheme using the Kuramoto-
Sivashinsky equation as an example of a spatiotemporally chaotic system.
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Recently, machine learning techniques have proven
useful for a wide variety of tasks, from speech recognition
[1] to playing Go [2]. In this Letter we show that machine
learning can be used for model-free prediction of the
evolution of the state of a large spatiotemporally chaotic
system. The accomplishment of this task is of great
potential application, e.g., for prediction of geophysical
dynamical systems. Specifically, we consider a situation
where a mechanistic description of the dynamics is
unavailable or insufficient for the desired purpose, but
reasonably accurate and complete observational data for the
evolution of the state of the system of interest can be
obtained. Assuming this situation, the goal of this Letter is
to formulate an effective technique for predicting the future
evolution of very large spatiotemporally chaotic systems
from data, an especially difficult problem presently without
a robust solution using existing techniques. We note that
model-free techniques for prediction based on delay coor-
dinate embedding are well established [3]. These tech-
niques are effective for low-dimensional chaos, and
extensions have been proposed for large spatiotemporally
chaotic systems [4]. Within the machine learning commu-
nity, there have been a number of rapid advances in
prediction using the technique known as reservoir comput-
ing [5–7]. In particular, Jaeger and Haas [8] have applied
reservoir computing to predict low dimensional chaotic
systems with good results. Although we focus on reservoir
computing, we expect that other machine learning tech-
niques, e.g., deep learning [9,10], might also be useful for
the task we address. On the other hand, we speculate that,
because of their essential dynamical character (see below),
artificial neural networks with recurrent connections
[11–13], such as reservoir computers, may be inherently
well suited for tasks which are themselves dynamical in

character, such as prediction or inference of unmeasured
state variables of a deterministic system [14]. We find that
our reservoir-based spatiotemporal prediction technique
yields excellent prediction results of unprecedented quality
at reasonable expense.
We now briefly introduce the basic ideas of reservoir

computing. An input vector uðtÞ of dimension Din
[Fig. 1(a)] is coupled through an I=R (input-to-reservoir)
coupler to a high-dimensional dynamical system [labeled R
in Fig. 1(a)] called the “reservoir,” from which an output
vector vðtÞ of dimension Dout is coupled through an R=O
(reservoir-to-output) coupler. The R=O coupler is assumed
to depend on many (Dp) adjustable parameters p, and to
create outputs vðtÞ that depend linearly upon the parameters
p. Denoting the state of the Dr dimensional reservoir
by the vector rðtÞ, the I=R, reservoir, and R=O functions
can be represented in discrete time (t ¼ 0;Δt; 2Δt;…)
by rðtþ ΔtÞ ¼ GfrðtÞ;Win½uðtÞ�g; vðtÞ ¼ Wout½rðtÞ;p�,
where Win (respectively, Wout) is a mapping from the
Din (Dr) dimensional input state space (reservoir state
space) to the Dr (Dout) dimensional reservoir state space
(output state space). We note that while, in this Letter, we

FIG. 1. (a) Training data gathering phase. (b) Predicting phase.
It is assumed that the parameters of the reservoir are chosen such
that the “echo state property” is satisfied [7]; i.e., all of the
conditional Lyapunov exponents of the training reservoir dy-
namics conditioned on uðtÞ are negative so that, for large t, the
reservoir state rðtÞ does not depend on initial conditions.
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consider time to be discrete (and will subsequently take Δt
to be small), the analogous continuous time reservoir is also
commonly employed. The goal is to train this system to
make vðtÞ closely approximate the desired outputs vdðtÞ
appropriate to the inputs uðtÞ [e.g., if the function of the
system is speech recognition [1], uðtÞ might be an
electronic signal derived from a person speaking, while
vdðtÞ would represent the words being spoken]. To accom-
plish this, one uses training data consisting of prerecorded
and stored measurements of uðtÞ and the resulting rðtÞ in
some time interval, −T ≤ t ≤ 0, and chooses the output
parameters p so as to minimize the least squares difference
between vdðtÞ and vðtÞ over the time interval −T ≤ t ≤ 0.
Since v ¼ Wout½r;p� is assumed to be linear in the
parameters p, the problem of determining p, and hence
Wout, is a simple linear regression [15]. With p determined,
if all goes well, the reservoir system can be used to fulfill its
intended task for t ≥ 0. Indeed, for large enough Dp and
Dr, this framework has proven to be extremely successful
for a variety of tasks [7].
Here we are interested in the task of predicting the future,

t > 0, evolution of uðtÞ from training data in −T ≤ t ≤ 0.
The prediction task via reservoir computing has been
previously addressed with excellent results for a situation
where uðtÞ comes from the state of a low-dimensional
chaotic system [8]. In that work, the desired output
condition was that vðtÞ be a good approximation to uðtÞ
[i.e., vdðtÞ ¼ uðtÞ]. After “training” vðtÞ to approximate
uðtÞ, the future evolution of uðtÞ for t > 0 is predicted by
replacing the input uðtÞ in Fig. 1(a) by vðtÞ, as shown in
Fig. 1(b). As we will demonstrate, prediction with a single
reservoir becomes computationally unfeasible as Din
increases. We will propose and illustrate a solution to this
problem for spatiotemporally chaotic systems using paral-
lel reservoirs assigned to different spatial regions.
In this Letter, we focus on the following specific

implementation choices, which are similar to those in
Ref. [8]. (We emphasize here that our choices are illus-
trative and that many others are possible.) The I=R coupler
is WinðuÞ ¼ Winu (whereWin is a Dr ×Din matrix whose
input elements are drawn from a uniform distribution in
½−σ; σ�). The reservoir is a large, low-degree (κ), directed
Erdös-Rényi network with a Dr ×Dr adjacency matrix A,
appropriately scaled so that its largest eigenvalue is equal to
ρ. The state of each network node j is a scalar rjðtÞ which,
in the setup of Fig. 1(a), evolves according to

rðtþ ΔtÞ ¼ tanh ½ArðtÞ þWinuðtÞ�; ð1Þ

where, for a vector q ¼ ½q1; q2;…�T, tanhðqÞ is the vector
½tanhðq1Þ; tanhðq2Þ;…�T . The R=O coupler is WoutðrÞ ¼
P1rþ P2r2, where P1 and P2 are Dout ×Dr matrices,
p ¼ ðP1;P2Þ, and r2 is the Dr dimensional vector whose
jth component is r2j . [We found that the simpler choice
WoutðrÞ ¼ P1r typically did not work for our illustrative

example [16].] While, for illustration, we use the specific
reservoir dynamics of Eq. (1), we emphasize that there is
great versatility in the scheme of Fig. 1. For example, for
tasks other than prediction, very fast processing has been
achieved by using high-dimensional photonic systems as
the reservoir [17–20] (see also Ref. [21]).
In the prediction phase, t > 0, uðtÞ in Eq. (1) is replaced

by vðtÞ ¼ Wout½rðtÞ�. Regardless of the short-term quality of
the predictions vðtÞ, they will eventually diverge from the
true state uðtÞ due to the exponential separation of trajecto-
ries that is a characteristic of chaotic systems. Consider now
the situation where at some future time θ > 0, one wants to
predictuðtÞ for t > θ based onmeasurements ofu up to time
θ. The reservoir can then be reinitialized using Eq. (1) for a
short period of time preceding θ, i.e., (θ − ϵ ≤ t ≤ θ), to
determine rðθÞ, and then used to predict for t > θ. (Once the
training is done, it need not be repeated for predictions of
subsequent time intervals.)
As an illustrative model for a spatiotemporally chaotic

system, we consider the Kuramoto-Sivashinsky (KS) equa-
tion modified by the addition [last term in Eq. (2)] of a
spatial inhomogeneity term,

yt ¼ −yyx − yxx − yxxxx þ μ cos

�
2πx
λ

�
: ð2Þ

The scalar field yðx; tÞ is periodic in the interval ½0; LÞ and
L is an integer multiple of λ. Note that the attractor
dimension depends directly on the dimensionless parameter
L and scales linearly with L for large L [22]. For later
comparison, we note that for L ≥ 100, the rms value of yt is
about 0.34, which can be compared to the value of μ to
roughly assess the strength of the inhomogeneity on the
dynamics. This equation reduces to the standard KS
equation when μ ¼ 0. The cosine perturbation breaks the
translation symmetry when μ ≠ 0. In this Letter, we will
consider both μ ¼ 0 and μ ≠ 0 in order to probe the effect
of spatial homogeneity on our predictions. Equation (2) is
integrated on a grid of Q equally spaced points with
Δt ¼ 0.25, giving a simulated data set with Q time series,
which we denote by the vector uðtÞ and use as the reservoir
input. Figure 2(a) shows our numerical solution of Eq. (2)
for a KS system with L ¼ 22, Q ¼ 64, and μ ¼ 0, while
Fig. 2(b) shows a reservoir performed prediction using the
scheme described above (Fig. 1). Figure 2(c) shows the
difference between the prediction and the actual solution
(we remark that this error metric may overemphasize errors
due to spatial shifting of the patterns).
Although the results of Fig. 2 indicate the potential for

reservoir-computer-based prediction of spatiotemporal
chaos, we note that, as L increases, the size Dr of the
reservoir network required to predict the system using a
single reservoir (as described by Fig. 1) increases. We find
that this makes prediction with a single reservoir intractable
for much larger values of L. In order to treat large systems,
we take advantage of the local nature of interactions in
typical spatiotemporally chaotic systems, as was done in
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Ref. [4] in the context of delay coordinates. We propose a
parallelized scheme consisting of a large set of reservoirs of
moderate size, each of which predicts a local region of the
spatiotemporal system. We comment that a somewhat
similar structure is employed by convolutional neural
networks (CNNs); for an example, see chapter 9 of
Ref. [10]. CNNs are widely used in deep learning for
image processing tasks, and employ a translationally
invariant structure (as we will later discuss for our KS
example with μ ¼ 0).
Consider a spatiotemporal system on a one dimensional

grid of sizeQwith periodic boundary conditions, giving us a
multivariate data set withQ time series which we denote by
the vector uðtÞ. TheQ variables ujðtÞ are split into g groups,
each group consisting of q spatially contiguous variables
such that gq ¼ Q. We denote the states of the spatial points
in each of the g groups by the vectors giðtÞ: g1ðtÞ ¼
ðu1ðtÞ; u2ðtÞ;…; uqðtÞÞT , g2ðtÞ ¼ ðuqþ1ðtÞ; uqþ2ðtÞ;…;
u2qðtÞÞT , and so on. Each group of time series, gi, is
predicted by a reservoir Ri with adjacency matrix Ai,
internal state riðtÞ and input weights Win;i. We denote the
input to the ith network by hiðtÞ, where hiðtÞ is such that

each reservoir accepts inputs from all of the spatial points in
the ith group as well as from two contiguous buffer regions
of l spatial points on its left- and right-hand sides, hiðtÞ ¼
ðuði−1Þq−lþ1ðtÞ; uði−1Þq−lþ2ðtÞ;…; uiqþlðtÞÞT (the subscript j
in uj is taken moduloQ). Thus, adjacent reservoir networks
have overlapping inputs with the size of the overlap set by
the locality parameter l (see Fig. 3).
The data from t ¼ −T to t ¼ 0 are used to train the

reservoir network, while the data from t > 0 is used to
evaluate the quality of the reservoir predictions. Similar
to Eq. (1), in the training phase, each of the g
reservoirs evolves in parallel according to riðtþ ΔtÞ ¼
tanh (AiriðtÞ þWin;ihiðtÞ), 1 ≤ i ≤ g, from t ¼ −T to
t ¼ 0. The g reservoirs are then trained by finding a set
of output weights pi ¼ ðP1;i;P2;iÞ for each reservoir such
that P1;iriðtÞþP2;ir2i ðtÞ≃giðtÞ. The trained reservoirs with
their output weights are now used to predict the time series,
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FIG. 2. Prediction of a KS equation with L ¼ 22, μ ¼ 0 using a
single reservoir of size Dr ¼ 5000. (a) Actual data from the KS
model. (b) Reservoir prediction. (c) Error [panel (b) minus panel
(a)] in the reservoir prediction. We multiply t by the largest
Lyapunov exponent (Λmax) of the model, so that each unit on the
horizontal axis represents one Lyapunov time, i.e., the average
amount of time for errors to grow by a factor of e.

FIG. 3. Illustration of the parallellized reservoir scheme (q ¼ 2,
l ¼ 1). The pink shaded vector above Ri represents its output ~gi.
The green shaded vector below Ri represents its input hi (during
training) and ~hi (during prediction). The dashed arrow shows the
feedback connection applied during the autonomous prediction
phase (t ≥ 0).
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FIG. 4. Prediction of KS equation (L ¼ 200, Q ¼ 512,
μ ¼ 0.01, λ ¼ 100) with the parallelized reservoir prediction
scheme using g ¼ 64 reservoirs. (a) Actual KS equation data.
(b) Reservoir prediction [ ~uðtÞ]. (c) Error in the reservoir
prediction. (d) Error in a prediction made by integrating the
KS equation when it uses the reservoir output at t ¼ 0, ~uð0Þ, as its
initial condition.

0 5 10 15

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L = 200
L = 400
L = 800
L = 1600

(a)

0 5 10 15

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

g = 8
g = 16
g = 32
g = 64

(b)

FIG. 5. (a) The rms error in the predictions of the KS system as
function of time for different system sizes L ¼ 200, 400, 800,
1600 with L=g held fixed at 200=64 for all four curves.
(b) Improvement of the prediction performance as the number
(g) of reservoirs employed is increased; L ¼ 200, Q ¼ 512,
μ ¼ 0.01, λ ¼ 100.
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~giðtÞ ¼ P1;iriðtÞ þ P2;ir2i ðtÞ, riðtþ ΔtÞ ¼ tanh (AiriðtÞþ
Win

~hiðtÞ), where ~hiðtÞ is determined from ~giðtÞ and the
output of the neighboring reservoirs, and we use a super-
scribed tilde to denote a predicted quantity.
We now present numerical results; unless otherwise

specified, the reservoir parameters used areDr ¼ 5000,T ¼
70 000 steps, ρ ¼ 0.6, σ ¼ 1.0, l ¼ 6, and κ ¼ 3. Once the
reservoir is trained and the output weights are determined,
the resulting autonomous reservoir is used to make a series
of predictions, which are then compared with the evaluation
data set.We perform predictions onK ¼ 30 nonoverlapping
time intervals, θk ≤ t < θk þ τ, each of length τ ¼ 1000 in
the evaluation data set. Here θk ¼ ðk − 1Þτ denotes the start
of each prediction interval. Before the start of each pre-
diction interval, all reservoir states are reset to ri ¼ 0 and the
reservoirs are then evolved with the true measurements uðtÞ
for ϵ ¼ 10 time steps, i.e., from t ¼ θk − ϵ to θk, according
to riðtþΔtÞ¼tanh(AiriðtÞþWin;ihiðtÞ), 1 ≤ i ≤ g. This
gives the reservoir appropriate initial conditions to begin
predicting autonomously for the next τ steps. The rms error
betweenuðtÞ and ~uðtÞ ¼ ( ~g1ðtÞ;…; ~ggðtÞ) is averaged over
the K independent predictions to give an estimate of the
typical quality of prediction. We perform the same predic-
tion 10 times, for different random reservoir realizations,
and calculate the average root-mean-square error (RMSE)
over all the trials. Figure 4 shows the results for a KS
equation (L ¼ 200, μ ¼ 0.01, Q ¼ 512) where Fig. 4(a) is
the numerical solution of Eq. (2), Fig. 4(b) is the reservoir
prediction using g ¼ 64 reservoirs of size Dr ¼ 5000 each,
and Fig. 4(c) is the prediction error [Fig. 4(a) minus
Fig. 4(b)]. We see that low prediction error is obtained
for about 8 Lyapunov times. As a performance benchmark,
Fig. 4(d) shows the error of the prediction made by
integrating the KS equation [with the same solution method
as Fig. 4(a)] using the output of the reservoir at t ¼ 0 as its
initial condition. Thus, Figs. 4(c) and 4(d) have the exact
same error at t ¼ 0. We see that the prediction time in
Fig. 4(d) is only slightly longer than that for Fig. 4(c),
indicating good reproduction of the true dynamics by the
reservoir system.
Figure 5(a) shows that we can obtain predictions

comparable to Fig. 4 independent of the system size L.

Table I indicates the largest Lyapunov exponent Λmax and
estimated Kaplan-Yorke dimension [23] of the KS system
along with the number of reservoirs (g) and the total
number of nodes NT in the g reservoirs used for Fig. 5(a).
When the strength of the cosine perturbation term is set

to μ ¼ 0, the KS equation [Eq. (2)] has translation
symmetry which can be exploited to drastically reduce
the computational cost of training the output weights. We
find that it is then sufficient to train a single reservoir
(say R1) by evolving it according to r1ðtþ ΔtÞ ¼
tanh (A1r1ðtÞ þWin;1h1ðtÞ) and then calculating (P1;1,
P2;1). We then use g identical reservoir systems with
Win;i ¼ Win;1, Ai ¼ A1, and ðP1;i;P2;iÞ ¼ ðP1;1;P2;1Þ for
1 ≤ i ≤ g in the prediction phase equations. As shown by
the agreement between the red (identical weights) and blue
(individually trained weights) curves in Fig. 6(a), this
works well. However, when μ ¼ 0.01, the method of
identical weights fails as expected [Fig. 6(b)]. Note that
the Lyapunov spectrum for μ ¼ 0.01 is very close to the
spectrum for μ ¼ 0 (see Supplemental Material [24]).
Further details are given in the Supplemental Material

[24]. The additional material illustrates that the perfor-
mance shown above is very robust, in that it changes little
over wide ranges in the various parameters.
In conclusion, our results suggests that machine learning,

and in particular reservoir computing, offers an effective
potential means for model-free prediction of large spatio-
temporally chaotic systems.
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