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The mass-imbalanced three-body recombination process that forms a shallow dimer is shown to possess
a rich Efimov-Stückelberg landscape, with corresponding spectra that differ fundamentally from the
homonuclear case. A semianalytical treatment of the three-body recombination predicts unusual spectra
with intertwined resonance peaks and minima and yields in-depth insight into the behavior of the
corresponding Efimov spectra. In particular, the patterns of the Efimov-Stückelberg landscape are shown
to depend inherently on the degree of diabaticity of the three-body collisions, which strongly affects the
universality of the heteronuclear Efimov states.
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The infinite geometric progression of trimer states, even
when all the two-body subsystems are barely unbound,
consists of the most counterintuitive few-body phenome-
non, namely, the Efimov effect [1,2]. The exotic Efimov
states have received extensive theoretical and experimental
study [3–11] addressing the underlying physical principles,
such as the universality of the ground Efimov state [12–19]
and the discrete scaling invariance for successive Efimov
states for homonuclear [20] and heteronuclear systems, i.e.,
heavy-heavy-light (HHL) [21–23]. Recent experimental
evidence on mass-imbalanced ensembles suggests that
the Efimov spectra possess a far richer landscape than
the homonuclear counterparts [24–26] stemming from the
large parameter space.
HHL systems possess two scattering lengths, i.e., aHH

and aHL, which define four main categories of behavior
according to the signs alone, since each aij can be positive
or negative. Additional subcategories unfold depending
on the magnitude, i.e., jaHHj=jaHLj≷1. Spanning a large
portion of parameter space, Refs. [21,22,25,27,28] exper-
imentally and theoretically explored the three-body losses
of the 6Li─133Cs─133Cs system, demonstrating that the
different signs in the intraspecies scattering lengths
(aCsCs≷0) render an inherently different Efimovian land-
scape. Additional experimental efforts for the case aHH > 0
illustrate deviations of the universal theory from the
observed Efimov spectra [26] in the regime where the
two-body interspecies interactions; i.e., aHL are tuned via
narrow Fano-Feshbach resonances [29]. These investiga-
tions pose the most intriguing questions in the few-body
physics of HHL systems: whether the three-body physics is
universal, whether the Efimov spectrum needs a nonuni-
versal “three-body parameter” (3BP) to specify its lowest
state, and whether van der Waals (vdW) physics approx-
imately determines that 3BP, as experimental and

theoretical evidence suggests is true for the homonuclear
case [13,14,16–18,30]. Therefore, a more flexible and
complete theoretical description of three-body recombina-
tion (3BR) into shallow dimers (aHH > 0) is needed.
This Letter develops a semiclassical theoretical treatment

based on the adiabatic hyperspherical representation with
nonadiabatic coupling included addressing shallow dimer
recombination for HHL systems. We demonstrate that the
universality for various observables in this system is
strongly affected by the degree of diabaticity connecting
the three-body continuum and recombination channels.
Adiabatic collisions exhibit the Efimov physics idiosyn-
crasies which depend only on the scattering lengths,
rendering the three-body system fully universal. In contrast
to the homonuclear case, heteronuclear systems with
positive intraspecies and negative interspecies interactions
(i.e., aHH > 0 and aHL < 0, respectively) exhibit 3BR rates
whose landscape for varying scattering lengths was pre-
viously predicted [31] to consist of Efimov resonances
intertwined with a series of Stückelberg interference
minima [32,33]. The present analysis shows how the
assumption of hyperradial adiabaticity underlying the
original prediction by D’Incao and Esry [31] must be
generalized when the relevant Landau-Zener transition
probability is closer to diabatic than adiabatic, as is true
for strong mass-imbalanced systems.
Our prototype three-body system consists of two

heavy (H) atoms and a light (L) one, which collide at low
energies via s-wave zero-range interactions. The 3BR into a
shallow heavy-heavy (HH) dimer and a recoiling light atom
is achieved by considering the intraspecies (interspecies)
interactions to possess a positive (negative) scattering
length, i.e., aHH > 0 (aHL < 0). The paraphernalia of the
adiabatic hyperspherical representation (for a detailed
review, see Ref. [11]) is employed in the following address-
ing the three-body physics of interest. In this representation,
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the properly symmetrized total wave function is written
as ΨðR;ΩÞ ¼ R−5=2P

νϕνðR;ΩÞFνðRÞ, where ϕνðR;ΩÞ
[FνðRÞ] refers to the νth hyperangular [hyperradial] com-
ponent of ΨðR;ΩÞ. The hyperangular factor is an eigen-
function of the fixed-R adiabatic equation [34]:

HadðR;ΩÞϕνðR;ΩÞ ¼ UνðRÞϕνðR;ΩÞ; ð1Þ
whereΩ collectively denotes the five hyperangleswhereasR
is the hyperradius [35,36]. The UνðRÞ are the adiabatic
hyperspherical potential curves, andHad contains the hyper-
angular kinetic operator together with the pairwise zero-
range interactions. After integrating over all the hyperangles
Ω, the three-body Schrödinger equation reads

�

−
d2

dR2
þ 2μ

ℏ2
ðUν − EÞ

�

FνðRÞ ¼
X

ν0
Vνν0Fν0 ðRÞ; ð2Þ

where μ¼mH=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2mH=mL

p
is the three-body reduced

mass, mH (mL) denotes the mass of the heavy (light)
atom, and E indicates the total relative energy.
Vνν0 ¼ 2Pνν0 ðRÞðd=dRÞ þQνν0 ðRÞ are the R-dependent
nonadiabatic coupling matrix elements obeying the rela-
tions Pνν0 ¼ hϕνðR;ΩÞjð∂=∂RÞϕν0 ðR;ΩÞiΩ and Qνν0 ¼
hϕνðR;ΩÞjð∂2=∂R2Þϕν0 ðR;ΩÞiΩ. Note that the symbol
h…iΩ indicates the integration over the hyperangles only.
For zero-range interactions, Uν, Pνν0 , and Qνν0 are known
semianalytically [3,37–39].
Figure 1(a) illustrates within the two-channel approxi-

mation the physical picture of a shallow dimer recombi-
nation process with aHH > 0 and aHL < 0. In Fig. 1(a), the
first two adiabatic potential curves U1=3

ν ðRÞ (solid blue and

orange lines) are depicted as functions of the scaled
hyperradius R=aHH. The mass ratio between the heavy
and light particle is set mH=mL ¼ 22.1 corresponding to
6Li─133Cs─133Cs collisions. The 3BP is introduced as a
hard wall boundary condition at R ¼ r3b [see the blue
hatched area in Fig. 1(a)], avoiding the Thomas collapse
[40]. The gray box in Fig. 1(a) indicates the hyperradial
region where the nonadiabatic coupling P-matrix element
maximizes, namely, the nonadiabatic transition region. At
the indicated total relative energy Ē, written in units of
ℏ2=mHa2HH [see the dotted line in Fig. 1(a)] and
R=aHH → ∞, the three particles are asymptotically free.
But as R=aHH decreases, the system tunnels inward under
the barrier probing the classically allowed region of the
upper potential curve (blue solid line). Because of the
nonadiabatic coupling (see the gray box), the three particles
can recombine to the lower potential curve (orange solid
line), forming a shallow HH dimer and a recoiling light
particle. To quantitatively address this physical process, a
fully semiclassical treatment of Eq. (2) is developed within
the two-channel approximation, yielding an analytical
expression for the corresponding 3BR rate K3:

K3 ¼
64ℏπ2

μk4
jS12j2; with jS12j2 ¼ e−2τpð1 − pÞN

D
;

N ¼ cos2
�
ΦU

L −ΦL
L −

π

4
þ λ

�
;

D ¼
�

1 −
e−4τ

16

�h
p cos2

�
ΦL

L þΦU
R −

π

4

�

þ ð1 − pÞcos2ðΦU
L þΦU

R þ λÞ
i

−
�
1 −

e−2τ

4

�
2
pð1 − pÞN þ e−4τ

16
: ð3Þ

Here k2 ¼ 2μE=ℏ2, and jS12j2 denotes the S-matrix
element describing the 3BR into a universal shallow dimer.
Figure 1(b) depicts the terms that appear in Eq. (3). The terms
Φi

αwith i ¼ L,U andα ¼ L,R indicate the Jeffreys-Wentzel-
Kramers-Brillouin phases (including the Langer correction
[32]) of the upper (i ¼ U) and lower (i ¼ L) potential curves
of Fig. 1(a) on the left- (α ¼ L) and right-hand side (α ¼ R) of
the transition region, i.e., the gray box in Fig. 1(a). The
asymptotic phases of the upper and lower curves are indicated
by ΦU

∞ and ΦL
∞, respectively, and, of course, the jS12j2 does

not depend on them. Note that ΦU
∞ is defined from the outer

classical turning point of the upper Efimov curve, whereas
ΦL

∞ is defined from hyperradii beyond the nonadiabatic
transition region. In Fig. 1(b), the factor e−τ indicates the
tunneling amplitude in the classically forbidden region of
the upper potential curve [see the blue solid line in Fig. 1(a)].
The 3BP is indicated in Fig. 1(b) by the far left black box.
The phase λ and the term p in Eq. (3) as well as the term

T LZ in Fig. 1(b) are associated with the Landau-Zener
physics [41]. p indicates the nonadiabatic transition prob-
ability from the upper to the lower potential curve shown in

FIG. 1. (a) The two lowest hyperspherical potential curves
U1=3

ν ðR=aHHÞ (orange and blue solid curves) for a HHL system
with mass ratio mH=mL¼22.1, aHL<0, aHH>0, and the total
energy Ē in units of ℏ2=mHa2HH is indicated as a black dotted line.
Thebluehatched area indicates the 3BPatR ¼ r3b,whereas thegray
region depicts themaximumof theP-matrix. The green dash-dotted
and purple dashed lines denote the dominant two interfering path-
ways. (b) An illustration of the terms associated with the semi-
classical treatment and their connections to the curves shown in (a).
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Fig. 1(a) which is evaluated by the P-matrix elements [42].
The phase λ is associated with the pass of the hyperradial
wave function through the nonadiabatic transition region
and solely depends on the probability p [43,44]. This
nontrivial phase is necessary for an accurate 3BR coef-
ficient, as our numerical tests suggest. The T LZ ≡
T LZðλ; pÞ denotes the nonadiabatic transition matrix which
interrelates the adiabatic hyperradial wave function bilat-
erally of the transition region as shown in Fig. 1(a) [43,44].
The analytical expression of K3 in Eq. (3) conveys the

most important attributes of a recombination process into a
shallow HH dimer for the HHL system. The key role is
played here by the degree of diabaticity, namely, the
nonadiabatic probability p in K3, and inherently modifies
the properties of the Efimov spectra, whereas in the
homonuclear cases the corresponding p is trivially an
overall prefactor in K3. The resonant enhancement of K3

mainly arises due to the resonant denominatorD in Eq. (3),
which explicitly depends on the nonadiabatic transition
probability p. Hence, the Efimov spectra are influenced
by the degree of diabaticity of the three-body collisions.
For example, in mostly diabatic collisions, i.e., p ≈ 1, the
Efimov resonances in K3 depend on the phaseΦL

L, which is
defined by the 3BP [see Fig. 1(b)]. For adiabatic three-body
collisions, i.e., p ≈ 0, K3 is virtually independent of the ΦL

L
phase. Therefore, a mostly adiabatic 3BR process possesses
a fully universal Efimov spectrum which is independent
of any 3BP. This adiabatic limit was stressed in the case
of vdW two-body interactions study presented by
Refs. [24,25]. The probabilityp, in general, depends mainly
on the jaHLj=aHH and the mass ratio β ¼ ðmH=mLÞ, but, in
principle, it could be affected by the vdWphysics in realistic
scenarios. In Fig. 2(d), p varies monotonically in the
interval (0.55,0.87) for jaHLj=aHH ∈ ð4.2; 123.4Þ, respec-
tively, matching the regime of Refs. [24–26] around
B ¼ 889 G. In the unitarity limit (jaHLj=aHH → ∞), p
obeys the fitting relation p∞ ∼ e−½16=ð2βþ1Þ�þ0.22 for 2.3 <
β < 23 to a good approximation. The latter implies that
large mass ratios yield mostly diabatic 3BR processes.
Equation (3) exhibits also signatures of Stückelberg

physics. The numerator of jS12j2 depends on the phases
ΦU

L and ΦL
L emerging from a two-pathway interference [see

the green dash-dotted and purple dashed lines in Fig. 1(a)]
and can cause a suppression ofK3, i.e., Stückelberg minima,
which is nonuniversal due to the ΦL

L phase. Note that the
semiclassical theory developed here for K3 in Eq. (3)
generalizes and extends the study by Ref. [31], through
our inclusion of the explicit dependence on the nonadiabatic
probability p. This analysis also provides a systematic
pathway to generalize Eq. (3) to positive inter- and intra-
species interactions going beyond previous studies [45,46].
Our calculated3BRcoefficient is illustrated inFig. 2,where

the systemof 6Li─133Cs─133Cs is considered. Figure 2 depicts
the scaled 3BR coefficient mCsK3=ℏa4LiCs at low energies Ē
(in units of ℏ2=mHa2HH), as a function of the ratios r3b=aCsCs

and jaLiCsj=aCsCs. Figure 2(a) refers to a direct numerical
solution of Eq. (2) within the two-channel approximation
using the R-matrix propagation method (for details, see
Refs. [47,48]). Figure 2(a) conveys the rich structure that
arises in the 3BR coefficient. The enhancements in
mCsK3=ℏa4LiCs emerge from metastable Efimov states that
resonantly transfer probability flux from the three-body
continuum into the atom-dimer continuum via the nonadia-
batic region [see the red stripes in the contour plot in Fig. 2(a)].
Within the zero-range approximation, the position of the
Efimov resonances mCsK3=ℏa4LiCs depend on the 3BP, i.e.,
ðr3b=aCsCsÞ, since for this system the three-body collision is
closer to being a diabatic process.mCsK3=ℏa4LiCs also exhibits
Stückelberg minima [see the green stripes in the contour plot
in Fig. 2(a)] which are virtually insensitive to variations of the
ratio jaLiCsj=aCsCs. This feature of coexisting Efimov reso-
nances and Stückelberg minima is inherent in HHL systems
with aHL < 0 and aHH > 0. In contrast, for homonuclear
recombination processes that produce a shallow dimer, at
positive scattering lengths one observes only Stückelberg
minima.
In the 6Li─133Cs─133Cs system, the Stückelberg minima

persist even at jaLiCsj=aCsCS < 4. The latter corresponds to

FIG. 2. The scaled 3BR coefficient mCsK3=ℏa4LiCs at low
energy Ē (in units of ℏ2=mHa2HH) for the

6Li─133Cs─133Cs system
as a function of two ratios: the 3BP r3b=aCsCs and the interspecies
scattering length jaLiCsj=aCsCs. Panels (b) and (c) show the scaled
3BR calculations within the semiclassical treatment and the
R-matrix numerical simulations, respectively. Panel (d) depicts
the probability p versus jaLiCsj=aCsCs.
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magnetic fields 891 ≤ B ≤ 950 G, where the ratio
jaLiCsj=aCsCS∈ð4.27;0.05Þ and aCsCs ∈ ð227a0; 991a0Þ
provide enough parameter tunability in order to experi-
mentally probe the Stückelberg minima. From Ref. [49],
the 3BR rates are suppressed for Cs atoms at B ¼ 893 G.
Additional Stückelberg physics in the Li─Cs2 channel
might enable the production of a gas of two bosonic
species that keeps high densities throughout a cooling
process as was also discussed in Ref. [50].
Figures 2(b) and 2(c) compare the scaled 3BR rates

calculated with Eq. (3) and with the R-matrix theory,
respectively, showing good agreement. Figures 2(b) and
2(c) exhibit two different log-periodic scaling behaviors
versus the axis of r3b=aCsCs and jaLiCsj=aCsCs, a distinct
feature of the Efimov physics in this system.
In the spirit of Ref. [51], the jS12j2 matrix elements in

Eq. (3) can be further approximated, focusing thus on the
diabaticity and log-periodicity of the K3. When E is the
lowest energy scale in the system, the upper and lower
adiabatic potential curves illustrated in Fig. 1(a) can
be parametrized as U1ðRÞ ¼ −ðℏ2=2μR2Þðs20 þ 1=4Þ (for
aHH≪R≪ jaHLj) and U2ðRÞ ¼ −ðℏ2=2μR2Þ½ðs�0Þ2 þ 1=4�
(for R≪aHH≪ jaHLj), respectively. As in Ref. [52], s0 (s�0)
corresponds to a universal Efimov scaling coefficient for
two (three) resonant interactions. Then jS12j2 simplifies to

jS12j2
ðkaHLÞ4

¼
pð1 − pÞ cos2ðs�0 ln r3b

aHH
þ ψ1Þ

Pð r3baHH
; jaHLjaHH

Þ
; ð4Þ

where P½ðr3b=aHHÞ;ðjaHLj=aHHÞ� ¼psin2½s0 lnðjaHLj=
aHHÞ þ ψ2 − ðs�0 lnðr3b=aHHÞ þ ψ1Þ� þ ð1 − pÞcos2ðs0 ×
lnðjaHLj=aHHÞþψ2Þ−pð1−pÞcos2ðs�0 lnðr3b=aHHÞþψ1Þ.
ψ1 and ψ2 are arbitrary constant phases and are treated
as fitting parameters. Note that Eq. (4) is valid for
jaHLj ≫ aHH ≫ r3B. Elegantly, Eq. (4) shows that jS12j2
depends on two geometric scalings where s�0 (s0)
solely determines the Stückelberg minima (Efimov reso-
nances). Note that, in the limit of large mass ratio, s�0 ≈ s0.
Figures 3(a)–3(c) illustrate the effects of diabaticity in
ðK3=a4HLÞ using Eq. (4) within two successive Stückelberg
minima where the nonadiabatic probability p is parametri-
cally adjusted; i.e., Figs. 3(a)–3(c) correspond to p ¼
ð0.8; 0.4; 0.1Þ, respectively. Note that the universal scaling
factors s0 and s�0 are taken from Ref. [52] for the physical
system of 6Li─133Cs─133Cs, whereas the phases ψ1 and ψ2

are arbitrarily chosen. Evidently, Figs. 3(a)–3(c) unravel the
universal aspects of the Efimov resonances in terms of
the degree of diabaticity. Figure 3(a) depicts the predomi-
nantly diabatic regime (p ¼ 0.8) where the positions
of the Efimov resonances strongly depend on the ratio
r3b=aCsCs, namely, on the 3BP. Notice that the trajectories
of the resonant enhancements, namely, Efimov manifolds,
shift upwards as r3b=aCsCs increases. Intuitively, this effect
is best understood in the diabatic picture [see Fig. 3(d)],
where the “diabatized” hyperspherical curves are shown,

whereas the magenta dash-dotted line indicates the
Efimov metastable state. The diabatic potential curve
(solid line) which supports the Efimov states depends on
the 3BP (gray box). Therefore, the energy of an Efimov
quasibound state remains in resonance only by simulta-
neously increasing the 3BP and the jaHLj=aHH. Note that
the maximum of the potential barrier in Fig. 3(e) increases
as Rb ∼ 0.34jaHLjmH=μ.
Interestingly, in the adiabatic limit, shown in Fig. 3(c) for

p ¼ 0.1, the Efimov resonance manifolds acquire universal
characteristics and become virtually independent of the
3BP. This attribute can be understood by inspecting the
potential curves in Fig. 3(e) showing the adiabatic version
of the potential curves. Figure 3(c) shows that the 3BP only
weakly affects the Efimov quasibound states (see the
magenta dash-dotted line) due to the repulsive barrier at
a small hyperradius (see the blue solid line) which shields
the three particles from exploring the nonuniversal region
that depends on the 3BP.
In the diabatic-to-adiabatic regime [see Fig. 3(b)]

[p ¼ ð0.4Þ], the Efimov manifolds undergo a rearrange-
ment where at r3b=aCsCs ≈ 0.05 each manifold is “inter-
rupted” and for p ¼ 0.1 [see Fig. 3(c)] is “reattached” with
the next one. This effect is mainly related to the widths
of the Efimov resonances with respect to r3b=aCsCs.
Particularly, in all the panels in Fig. 3, the Efimov
manifolds are broader at r3b=aCsCs ≈ 0.05, whereas close
to the Stückelberg minima they become narrower. This

FIG. 3. The scaled 3BR mCsK3=ℏa4LiCs at Ē → 0 for
6Li─133Cs─133Cs using Eq. (4). Panels (a)–(c) correspond to
different nonadiabatic probabilities, namely, p ¼ ð0.8; 0.4; 0.1Þ,
respectively. Panels (d) and (e) present schematic illustrations of
the diabatic and adiabatic hyperspherical potentials, respectively.
The magenta dash-dotted line indicates the quasibound Efimov
state, and the gray box depicts the 3BP.
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dependence of the width of the Efimov resonances on the
3BP can be understood in terms of the two dominant
interfering paths for the recombination into a shallow dimer
[see the dashed and dot-dashed lines in Fig. 1(a)]. Close to
the Stückelberg minima due to the destructive interference
of the two pathways, the Efimov quasibound state is
weakly coupled to the atom-dimer continuum, yielding a
narrow Efimov manifold. But for r3b=aCsCs ≈ 0.05 the two
pathways interfere constructively; hence, the trimer meta-
stable state is strongly coupled to the continuum broad-
ening the Efimov manifolds. Figure 3(b) demonstrates that
for p ¼ 0.4 the two pathways interfere maximally, yielding
maximally broad Efimov manifolds that are completely
smeared out by the atom-dimer continuum.
Conclusions.—The detailed idiosyncrasies of the Efimov

physics for mass-imbalanced ultracold systems are inves-
tigated, with a focus on recombination processes into
shallow HH dimer states. Our semiclassical analysis is
based on the adiabatic hyperspherical representation includ-
ing the Landau-Zener physics, yielding a closed-form
expression for the corresponding 3BR rate. A rich
Efimov-Stückelberg landscape is illustrated from our analy-
sis as a unique feature of the mass-imbalanced systems
where the degree of diabaticity constrains the Efimovian
universality. Namely, a diabatic recombination processes
depends strongly on the 3BP. In the diabatic-to-adiabatic
regime, the Efimov state manifolds exhibit a rearrangement
effect and illustrate the transition from system-dependent
Efimov resonances to system-independent ones. The present
development can be generalized to include vdW two-body
interactions in order to elucidate the extent to which the 3BP
is constrained beyond the zero-range theories.
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