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We show thatmultipartite quantum states that have a positive partial transposewith respect to all bipartitions
of the particles can outperform separable states in linear interferometers. We introduce a powerful iterative
method to find such states. We present some examples for multipartite states and examine the scaling of the
precision with the particle number. Some bipartite examples are also shown that possess an entanglement very
robust to noise.We also discuss the relation ofmetrological usefulness to Bell inequality violation.We find that
quantum states that do not violate any Bell inequality can outperform separable states metrologically. We
present such states with a positive partial transpose, as well as with a nonpositive partial transpose.
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Introduction.—Entanglement lies at the heart of quantum
mechanics and plays an important role in quantum informa-
tion theory [1]. However, in spite of intensive research, many
of the intriguing properties of entanglement are not fully
understood. One of such puzzling facts is that, while
entanglement is a sought-after resource, not all entangled
states are useful for some particular quantum information
processing application. For instance, in theEkert protocol for
quantum cryptography [2], entangled states that do not
violate a Bell inequality are not useful.Moreover, maximally
entangled singlets cannot be distilled from entangled quan-
tum states that have a positive-semidefinite partial transpose
(PPT). Such states, also called bound entangled, have been at
the center of attention in quantum information science [3,4].
Recently, it has been realized that entangled states can be

useful in very general metrological tasks in the sense that
they make it possible to overcome the shot-noise limit in
the precision of parameter estimation corresponding to
classical interferometers [5–9]. Notably, separable states,
i.e., states without entanglement, cannot overcome the
classical limit. However, again, there are highly entangled
states that are not useful for metrology [10].
The relation between the various subsets of entangled

states have been studied for a long time. It has been
conjectured by Peres that no bound entangled state violates
a Bell inequality [11], which, after numerous attempts, has
been recently refuted [12]. The search for counterexamples
has been hindered by the fact that the conjecture is very
close to be true. At this point, the questions arise: are there
bound entangled states that are metrologically useful? Can
states that do not violate any Bell inequality be metrologi-
cally useful? Finding such states numerically seems to be as
easy as finding a needle in the haystack since we need to
maximize a convex function over a convex set. There have

been results concerning entanglement criteria with several
quantum Fisher information terms detecting PPT entangled
states as well as concerning the metrological usefulness of
multipartite states that are not PPT with respect to all
bipartions [6,13,14]. However, it is a famously hard open
problem of quantum information theory whether states with
only PPT entanglement can be useful for metrology [14].
In this Letter, we give an affirmative answer to the

question above. We show that there are bound entangled
states that outperform all separable states metrologically, as
depicted in Fig. 1. Below, we summarize the four main
contributions of this Letter.
(i) We present multiqubit quantum states that are metro-

logically useful, while having a positive partial transpose
with respect to all bipartitions. In this way, wemake sure that
the metrological advantage compared to separable states
cannot be attributed to the non-PPT bipartitions.
(ii) We also present several bipartite PPT states for

dimensions from 3 × 3 to 12 × 12 that outperform separable
states in quantum metrology. The metrological advantage of
these states compared to separable states is very robust to

FIG. 1. Various convex sets of quantum states represented by
circles: (P) PPT states, (M) states that are not useful for metrology,
(S) separable states, (L) states with a local hidden variable model.
(gray area) Metrologically useful PPT states. Such states are in
PnM, where n denotes the difference between two sets.
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noise. Thus, such states might be realized in experiments
with photons or trapped cold ions (e.g., [15–18]).
(iii) We show an iterative method based on semidefinite

programming (SDP) that can generate such states very
efficiently. The method, starting from a given initial state,
provides a series of PPT quantum states with a rapidly
increasing metrological usefulness.
(iv) We now turn to the relation of metrological useful-

ness and other convex sets of quantum states. We show that
quantum states with a local hidden variable model, i.e., not
violating any Bell inequality, can be metrologically useful.
We present such states with a positive as well as with a
nonpositive partial transpose [14].
Quantum Fisher information.—Before discussing our

main results, we review some of the fundamental relations
of quantum metrology. A basic metrological task in a linear
interferometer is estimating the small angle θ for a unitary
dynamicsUθ ¼ expð−iAθÞ, where A ¼ P

N
n¼1 a

ðnÞ,N is the
particle number, and aðnÞ are single particle operators. The
precision is limited by the Cramér-Rao bound as [19–21]

ðΔθÞ2 ≥ 1=FQ½ϱ; A�; ð1Þ
where the quantum Fisher information, a central quantity in
quantum metrology, is defined by the formula [19]

FQ½ϱ; A� ¼ 2
X

k;l

ðλk − λlÞ2
λk þ λl

jhkjAjlij2: ð2Þ

Here, λk and jki are the eigenvalues and eigenvectors,
respectively, of the density matrix ϱ, which is used as a
probe state for estimating θ.
It has been shown that for separable multiqubit states, the

quantum Fisher information, characterizing the maximal
precision achievable by a quantum state, is bounded as [5]

FQ½ϱ; Jz� ≤ N; ð3Þ
where Jz ¼

P
N
n¼1 j

ðnÞ
z , and jðnÞz are the single particle

angular momentum components. Equation (3) can easily
be generalized for qudits with a dimension d > 2 and
operators A different from Jz. If FQ½ϱ; A� is larger than
the maximum reached by separable states, then ϱ is useful
for metrology. The maximum for separable states is
given by

P
N
n¼1½λmaxðaðnÞÞ − λminðaðnÞÞ�2, where λminðaðnÞÞ

and λmaxðaðnÞÞ denote the minimum and maximum eigen-
values of aðnÞ, respectively [22].
Main results.—Is Eq. (3) also valid for PPT states, i.e.,

multiqubit states, that are PPTwith respect to all partitions?
One could expect that this is the case since PPT states can
only be weakly entangled, while they are highly mixed. The
latter property hinders the violation of Eq. (3) since the
Fisher information is convex, decreasing strongly after
mixing quantum states.
Next, we present our first main result. We show that

states with a positive partial transpose can still violate

Eq. (3) and its generalizations for A ≠ Jz. Now, we give
concrete examples, mentioning first only the main proper-
ties of the states found numerically.
Four-qubit state.—PPT with respect to all bipartitions,

and with A ¼ Jz.
Three-qubit state.—PPT with respect to all bipartitions.

We consider operators different from Jz and take A ¼
jð1Þz þ jð2Þz .
Qubit-ququart bipartite PPT entangled state.—It is a

three-qubit state for which only the 1∶23 partition is PPT,
while the other two bipartions are not PPT. Hence, the state
has a higher value of quantum Fisher information than the
three-qubit PPT state presented before. The three-qubit
state can easily be transformed into a 2 × 4 bound
entangled state, having the smallest dimensions in which
PPT entanglement is possible.
Bipartite states of twoquditswith equal dimension.—d × d

states with d ¼ 3; 4;…; 12, with the operator

A¼ 1⊗DþD⊗ 1; D¼ diagð1;1;…;−1;−1Þ; ð4Þ
where for even d in the diagonal of D, there are d=2 1’s
and d=2 − 1’s, and for odd d, there are ðdþ 1Þ=2 1’s
and ðd − 1Þ=2 − 1’s.
The quantum Fisher information of the states found, with

other relevant properties, are summarized in Tables I and II.
The density matrices of all the states are available in the
Supplemental Material [22].
Maximization over PPT states.—We now describe the

method that has been used to find the metrologically useful
PPT states. Brute force maximization of the quantum
Fisher information (2) for PPT states is extremely difficult
since it is a convex function of the state. Hence, the
maximum will be taken on the boundary of the set of
PPT states, and no method can guarantee to find the global
optimum.
We look for a simpler solution. We know that the error

propagation formula gives the precision of estimating the
parameter θ by measuring the expectation value of the
operator M as

ðΔθÞ2 ¼ ðΔMÞ2
j∂θhMij2 ¼

ðΔMÞ2
hi½M;A�i2ϱ

: ð5Þ

TABLE I. Quantum Fisher information for PPT states found
numerically in various systems. For each system, the maximum
for separable states is shown. The robustness of the metrological
usefulness of the states is also given, assuming white noise.

System A FQ½ϱ; A� F ðsepÞ
Q pwhite noise

Four qubits Jz 4.0088 4 0.0011
Three qubits jð1Þz þ jð2Þz

2.0021 2 0.0005

2 × 4 (three qubits,
only 1∶23 is PPT)

jð1Þz þ jð2Þz
2.0033 2 0.0008
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Based on Eq. (1), the quantity 1=ðΔθÞ2 provides a lower
bound on the quantum Fisher information. Note that for
some M, the bound is saturated [21,35,36].
We now show that it is possible to obtain the quantum

state minimizing Eq. (5).
Observation 1.—The minimum of the precision (5) for

PPT states for a given operator M can be obtained by a
semidefinite program.
Proof.—Let us define first

fMðX; YÞ ¼ min
ϱ
TrðM2ϱÞ;

such that ϱ ≥ 0; ϱTk ≥ 0 for all k;TrðϱÞ ¼ 1;

hi½M;A�i ¼ X; and hMi ¼ Y; ð6Þ

where the optimization is carried out over a density matrix
ϱ, which is PPT with respect to all bipartitions. Clearly,
fMðX; YÞ can be obtained via semidefinite programming.
Note the important property that fMðX; YÞ is convex in X
and Y since the set of PPT states is a convex set. Then, the
minimum of Eq. (5) for a given M and for PPT states is

ðΔθÞ2 ¼ min
X;Y

fMðX; YÞ − Y2

X2
; ð7Þ

which needs an optimization over two real parameters. ▪
If the measured operatorM is known, then Observation 1

provides a straightforward method to decide whether PPT
states can outperform separable states. Based on Eqs. (1)
and (3), we have to simply check whether 1=ðΔθÞ2 ≤ N can
be violated.
We now encounter the problem of how to obtain the

optimalM for which we can expect a violation of the bound
corresponding to separable states. Next, we will present a
very efficient solution to this problem [37].
Iterative Method.—To find a violation of the separability

bound for the quantum Fisher information with PPT states

of local Hilbert space dimension d, we use the following
iterative procedure.
(1) Set j ¼ 0. Generate randomly ameasurement operator

M. Set X to the average of the minimum and maximum
eigenvalues of the expression i½A;M�.
(2) Compute fMðX; YÞ from Eq. (6) for Y ¼ 0. This is a

semidefinite program,which returns the optimal stateϱj. The
optimal precision is ðΔθÞ2ϱj ¼ TrðM2ϱjÞ=X2 [c.f. Eq. (5)].
(3) Find the operator M that achieves the highest ðΔθÞ2ϱj

value for given ϱj. It is given by the symmetric logarithmic
derivative [21]

M ¼ 2i
X

k;l

λk − λl
λk þ λl

jkihljhkjAjli; ð8Þ

where λk and jki are now the eigenvalues and eigenvectors,
respectively, of ϱj. The quantumFisher information of ϱj can
be obtained with M as

FQ½ϱj; A� ¼ TrðM2ϱjÞ: ð9Þ
(4) Set X ¼ hi½M;A�i and j ¼ jþ 1.
(5) Repeat steps 2-4 until convergence of the objective

value FQ½ϱj; A� is reached.
Note that for the operatorM obtained in step 3, the relation

Y ¼ hMi ¼ 0 holds. Hence, when at the next iteration, the
algorithm reaches step 2 requiring hMi ¼ 0 means that in
the worst case, the same density matrix is found again as
optimal. Typically, a better one is found, which implies
FQ½ϱj; A� ≤ 1=ðΔθÞ2ϱjþ1

. The latter inequality, together with

the Cramér-Rao bound (1), yields 1=ðΔθÞ2ϱ0 ≤ FQ½ϱ0; A� ≤
1=ðΔθÞ2ϱ1 ≤ FQ½ϱ1; A� ≤ � � �. Thus, the series FQ½ϱj; A�
never decreases.
The rapid convergence of the algorithm.—Our experi-

ence shows that the algorithm leads to a violation of the
separable bound with 2–5 of trials in 10–20 iteration steps
[38]. We plot the quantum Fisher information values of the
density matrices obtained via the iterative algorithm for a
concrete example in Fig. 2.
Robustness of the states obtained.—We examine how

much the quantum states presented above can outperform
separable states. The 12 × 12 bipartite state, referenced in
Table II, shows a remarkably large violation of the bound
corresponding to separability. The amount of violation can
be characterized by the robustness of the metrological
usefulness, i.e., the maximal amount of noise added for
which the state performs still better than separable states.
This can be obtained for white noise by direct calculation,
while it can be bounded from below for PPT noise using
semidefinite programming, see the Supplemental Material
[22]. The robustness values obtained are given in Tables I
and II. They indicate that some of our quantum states might
be realized in the laboratory since they are resistant to the
level of noise present in experiments. Note that the robust-
ness of entanglement [39] is larger or equal to the robust-
ness based on the metrological performance.

TABLE II. Quantum Fisher information for PPT states found
numerically in two-qudit systems of local dimension d, where the
maximum of the quantumFisher information for separable states is
8. The operator A is given in Eq. (4). For each state, the robustness
of themetrological usefulness of the states is shown forwhite noise.
A lower bound on the tolerated separable noise is also given.

d FQ½ϱ; A� pwhite noise pLB
noise

3 8.0085 0.0006 0.0003
4 9.3726 0.0817 0.0382
5 9.3764 0.0960 0.0361
6 10.1436 0.1236 0.0560
7 10.1455 0.1377 0.0086
8 10.6667 0.1504 0.0670
9 10.6675 0.1631 0.0367
10 11.0557 0.1695 0.0747
11 11.0563 0.1807 0.0065
12 11.3616 0.1840 0.0808
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Negativity.—So far, we have carried out an optimization
for states that have a positive partial transpose for all
bipartitions. The same algorithm can also be used if we
relax this requirement to requiring that the smallest
eigenvalue of the partial transposes is larger than λmin,
where λmin can now be negative. It is also possible to put a
constraint on the negativity of the quantum state [40]. In the
multipartite case, we can constrain the minimum of the
bipartite negativities. To this end, we use a semidefinite
program. The results can be found in the Supplemental
Material [22].
Metrologically useful quantum states with a local hidden

variable model.—As discussed in Ref. [14], it is an
important question in entanglement theory whether states
with another form of weak entanglement, i.e., entangled
states with a local hidden variable model, can also be useful
for metrology. We will answer the question affirmatively.
First, we describe an example with a positive partial

transpose. For that, we consider the 2 × 4 state listed in
Table I. We found that it is possible to construct numeri-
cally a local hidden variable model for the state using the
algorithm of Refs. [41,42]. In Fig. 1, such states correspond
to the set P∩LnM, where ∩ denotes the intersection of
two sets.
Next, we present non-PPT examples. Direct calculation

shows that the two-qubit Werner state pjΨ−ihΨ−jþ
ð1 − pÞ1=4, defined in Ref. [43], with jΨ−i ¼ ðj01i −
j10iÞ= ffiffiffi

2
p

for p > 0.3596, is metrologically more useful
than separable states, i.e., FQ > 2. We considered the
dynamics given by A ¼ jz ⊗ 1 − 1 ⊗ jz. Such a state does
not violate any Bell inequality for p < 0.6829 using pro-
jective measurements [44,45]. In Fig. 1, metrologically
useful Werner states with a local hidden variable model
correspond to LnPnM. A subset of the states above, i.e.,
Werner states forp < 5=12 ≈ 0.4167, do not violate anyBell
inequality, even if positive operator valued measures
(POVMs) are allowed [46].

Conclusions.—We showed that quantum states with a
positive partial transpose can outperform separable states in
the most general metrological task of estimating a param-
eter in linear interferometers. A powerful iterative method
was presented for finding such states. We provided exam-
ples for multipartite systems, where all the partial trans-
poses were positive. We also presented bipartite examples.
Moreover, we presented PPT entangled states, as well as
non-PPT entangled states, that do not violate any Bell
inequality while they are still useful metrologically.
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