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In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in
order to execute multiqubit logical gates. Any residual entanglement between the internal and motional
states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal.
We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained
an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust
against frequency drifts over �1 kHz. Experimentally, we have obtained a 2-qubit gate fidelity of
98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.
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Ion traps are a leading candidate for the realization of a
quantum computer. Magnetically insensitive qubit energy
splittings, long coherence times, and high-fidelity state
initialization and detection [1,2] prove to be significant
advantages for trapped ion qubits. Individual qubit address-
ing and single-qubit gates with error rates on the order of
10−5 per gate have been achieved [1,3–5]. Multiple qubits
can be entangled through state-dependent forces driven by
external fields [6–9], and for exactly two ions, entangling
gate fidelities routinely exceed 99% and in some cases
99.9% [10–15].
With increasing ion number, however, the motional

modes bunch in frequency, which means exciting only a
single motional mode becomes prohibitively slow.
Alternatively, the state-dependent driving forces can couple
to all modes of motion. A number of schemes have been
proposed for disentangling the internal qubit states from the
motional states of all modes by introducing variations to the
driving force during the gate. One way to achieve this goal
is amplitude modulation (AM) of the driving field [16,17].
Several experiments have adopted this method and have
achieved a 2%–5% error [18–20]. Discrete phase modula-
tion (PM) has also been proposed for the same purpose, but
the number of pulses in the sequence increases exponentially
with the number of ions [21]. Moreover, discrete changes in
laser amplitude and phase are hard to implement physically,
especially when we perform fast gates.
We propose a novel decoupling method through con-

tinuous frequency modulation (FM), theoretically equiv-
alent to continuous PM, which involves only small and
smooth oscillations of the detuning of the applied field.

First, we explain the coherent displacement of the ion
chain’s motional modes during the Mølmer-Sørensen (MS)
gate. Then, we describe how the residual displacement of
the ions can be minimized in a way which is robust to small
changes in trap frequency. Next, we experimentally dem-
onstrate this gate in a chain of five 171Ybþ ions. Finally, we
discuss extensions of the method to larger ion chains, with
17 ions as an example.
To entangle two qubits with theMS gate, we apply a state-

dependent driving force near the sideband frequencies. As a
result, each motional mode experiences a coherent displace-
ment characterized by the operator [16,17]:

D̂ðα̂kÞ ¼ expðα̂ka†k − α̂†kakÞ;

α̂kðtÞ ¼
Ω
2
ðηi;kσiϕ þ ηj;kσ

j
ϕÞ

Z
t

0

eiθkðt0Þdt0; ð1Þ

where Ω is the carrier coupling strength, ηi;k and ηj;k are
the Lamb-Dicke parameters of ions i and j with respect to
mode k, σiϕ and σjϕ are bit-flip Pauli operators for the
addressed ions, and θkðtÞ ¼

R
t
0 δkðt0Þdt0 and δkðtÞ are the

phase and detuning of the driving force relative to mode k. If
the qubits are at the þ1 eigenstate of both σiϕ and σjϕ, the
displacement is

αkðtÞ ¼
Ω
2
ðηi;k þ ηj;kÞ

Z
t

0

eiθkðt0Þdt0: ð2Þ

We may visualize the trajectory of αkðtÞ over time by
plotting it in the complex plane. This is the phase space
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trajectory (PST) of the motional mode k. For a total gate
time τ, αkð0Þ ¼ 0 and αkðτÞ are the beginning and end
points of the PST.
Because of the state-dependent nature of α̂kðtÞ, different

eigenstates of σiϕ and σ
j
ϕ follow different PSTs. If any of the

αkðτÞ is nonzero, there is residual entanglement between
the internal and motional state spaces, which leads to a
mixed internal state. This lowers the overall gate fidelity
(F ¼ jhψ finaljψ idealij2). Given that jαkj ≪ 1, we find that the
consequent gate error may be estimated as

ε≡ 1 − F ≈
XN
k¼1

jαkðτÞj2: ð3Þ

Minimizing jαkj is therefore the most straightforward
criterion for an optimized gate. However, the gate is
sensitive to small drifts in sideband frequencies
(δk → δk þ δ1 and δ1 ≪ 1=τ), an imperfection which we
often observe in experiments. The frequency dependence of
αkðτÞ can be canceled to the first order by setting the time-
averaged position of αkðtÞ to zero:

αk;av ∝
Z

τ

0

Z
t

0

eiθkðt0Þdt0dt ¼ 0: ð4Þ

It turns out that if we only consider symmetric pulses
[δkðτ − tÞ ¼ δkðtÞ], minimizing αk;av also minimizes αkðτÞ.
In our scheme, we modulate the driving frequency

during the gate to minimize the gate error. The trajectory
αkðtÞ moves with constant speed but varying angular rate
δkðtÞ. Therefore, FM allows us to control the curvature and
thus the shapes and end points of the PSTs. We let the
frequency assume a symmetric, oscillatory pattern (see
example in Fig. 1). The vertices (local maxima and minima)
of the oscillations are set to be evenly spaced in time and
are the only variable control parameters in our optimiza-
tion. The vertices are connected with sinusoidal functions,
which leads to a smooth and continuous frequency profile.
The function to be minimized is jαk;avj2 for robust pulses
and jαkj2 for nonrobust pulses. The number of vertices used
is increased until we successfully converge to a solution
with errors much lower than 0.01%. Detailed derivations
for Eqs. (3) and (4) as well as the optimization process are
provided in the Supplemental Material [22].
Both robust and nonrobust versions of the gate are

tested on our five-ion quantum computer. In our setup,
five 171Ybþ ions are held in a rf Paul trap with a radial trap
frequency of 3.045 MHz and an average ion separation of
about 5 μm. Our qubit is defined by the ground hyperfine
states 2S1=2; jF ¼ 0i and 2S1=2; jF ¼ 1i with an energy
splitting of 2π × 12.642821 GHz [1]. Initially, all ions
are cooled to close to the motional ground state
(≈0.1 phonons) and then optically pumped to the j0i
state. Quantum gates are implemented using a beat note
generated by counterpropagating Raman laser beams that
are capable of addressing any individual qubit [18].

The five transverse motional sidebands are experimen-
tally determined and used to find the optimal FM pulses for
the 2-qubit gate. We increase the number of oscillations
(degrees of freedom) for optimization until we find a pulse
with low errors. With a fixed gate time of 90 μs, the
optimized robust pulse consists of 13 oscillations, whereas
the nonrobust version has only nine (Fig. 1). The driving
frequency crosses the sidebands multiple times, which
contrasts with other implementations of MS gates that
avoid sideband resonance.
PSTs are plotted for no frequency error and for a 1 kHz

frequency drift for both robust and nonrobust pulses in
Fig. 2. With the drift, the end points of the robust trajectory
(circles) stick to the origin, whereas those of the nonrobust
(diamonds) deviate from the starting point, causing an
estimated error of about 0.5%. This proves the importance
of the robustness criterion.
We present the results on entangling two neighboring

ions on one edge of the ion chain in the robust case. The
output population and parity are measured and shown in
Figs. 3(a) and 3(b), giving a fidelity of 98.3(4)%, excluding
state preparation and measurement (SPAM) errors. This is
among the highest fidelities achieved for multiqubit gates in
the presence of spectator ions [18]. Using the robust gate,
we also successfully perform a CNOT gate with 98.6(7)%
fidelity and generate a 3-qubit GHZ state with 92.6(3)%
fidelity. The 1% error level observed is partially attributed
to laser intensity fluctuations (∼2%), which breaks the
assumption of constant laser power during the gate.
In order to lower the overall laser intensity Ω, each 90 μs

pulse is performed twice for each gate, with a combined
gate time of 180 μs. The Ω required is 2π × 600 kHz
in carrier Rabi frequency, which is much larger than

FIG. 1. Robust (violet, solid line) and nonrobust (blue, dash-
dotted line) FM pulses for 2-qubit gate optimized for five ions,
both with a gate time of 90 μs. Green lines are experimental
sideband frequencies, labeled 1–5, the first one being the
common mode frequency. The pulses are designed to be
symmetric in time. The dots and diamonds are the vertices of
the frequency and represent the control parameters allowed to
vary in our optimization algorithm.
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2π × 151 kHz as expected by simulation. The discrepancy
is most likely due to an overestimate of the Lamb-Dicke
parameters in our simulation. The high power used worsens
other error sources such as Raman scattering, off-resonant
excitation, and cross talk with other qubits [11,12].
The theoretically estimated gate error is plotted as a

function of frequency drift in Fig. 4(a) to compare the
robust pulse with the nonrobust pulse. A typical error
threshold for high-fidelity gates is 0.01%. The robust pulse
can tolerate frequency errors up to �1.5 kHz, whereas the
nonrobust less than �0.1 kHz. The nonrobust pulse has a
quadratic dependence on the drift, whereas the robust
version has a quartic dependence. This is expected, since
error is proportional to displacement squared, and the first-
order dependence of the displacement on drift is canceled
out in the robust case.
To determine the impact of sideband drifts, we exper-

imentally run the two gates over a range of symmetric
detuning offsets [Fig. 4(b)]. The robust version has even-
parity population higher than 90% for frequency offsets up to
�5 kHz, whereas the nonrobust gate has significantly lower
fidelity and tolerance towards frequency errors (within
�1 kHz), confirming that the robust method improves

fidelity significantly by canceling errors due to frequency
drifts.
To test the scalability of our method, we run a similar

optimization for 17 ions, motivated by the 17-qubit surface
code proposed for quantum error correction [23–26].
The sideband frequencies are calculated from a simulated
anharmonic ion trap with an average ion separation of
about 3.5 μm. Such high ion density may be challenging to
realize with current technology, but that does not pose a
fundamental physical limit to experiments.

(b)(a)

FIG. 3. (a) State population and (b) parity scan of the two qubits
after the optimized and robust 2-qubit gate shown in Fig. 1,
indicating a fidelity of 98.3(4)%.

(a)

(b)

FIG. 2. Simulated PSTs with (a) no frequency error and
(b) −1 kHz sideband drift, using the FM pulses shown in Fig. 1.
The end points for the robust pulse (circles) return to the starting
point with the drift, whereas those for the nonrobust pulse
(diamonds) fail to do so. The horizontal and vertical axes represent
the quadratures xk ∼ a†k þ ak and pk ∼ iða†k − akÞ, respectively.

(a)

(b)

FIG. 4. (a) Simulated gate error and (b) experimental even-parity
populations of the two qubits after the gate for a range of detuning
offsets. The robust gate has a significantly better performance than
the nonrobust gate in both theory and experiment.
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The robust FM pulse obtained consists of 47 oscillations
within a gate time of 250 μs (Fig. 5). The gate can tolerate a
frequency drift of 500 Hz for an error threshold of 0.01%.
Apparently, the gate is more sensitive to frequency errors
due to an increased number of motional modes and a longer
gate time.
The power required (Ω) for the 2-qubit gate ranges from

2π × 115 kHz for neighboring ions to 2π × 249 kHz for
the furthest separated ions (≈1∶2 ratio between lowest and
highest). This is an encouraging result. Previous simulation
results indicate that 2-qubit gate time and power increase
very quickly with the distance between the ions. But by
using a flexible and well-designed optimization program,
we have found a FM pulse that can overcome this difficulty.
We have shown that we can perform high-fidelity 2-qubit

gates in a five-ion trap using frequency modulation. In
theory, the optimized robust FM pulse can suppress errors
in gate fidelities to below 0.01% for up to a �1.5 kHz
frequency offset for five 171Ybþ ions. The gate is used to
maximally entangle two ions in experiment and has a
fidelity of 98.3(4)%. We speculate that in the near future,
we will attain over 99.9% fidelity previously achieved with
two-ion chains [10–12].
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