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We construct a Fermi liquid theory to describe transport in a superconductor-quantum dot-normal metal
junction close to the singlet-doublet (parity changing) transition of the dot. Though quasiparticles do not
have a definite charge in this chargeless Fermi liquid, in the case of particle-hole symmetry, a mapping to
the Anderson model unveils a hidden U(1) symmetry and a corresponding pseudocharge. In contrast to
other correlated Fermi liquids, the back scattering noise reveals an effective charge equal to the charge of
Cooper pairs, e� ¼ 2e. In addition, we find a strong suppression of noise when the linear conductance is
unitary, even for its nonlinear part.
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Introduction.—Apart from disrupting our communica-
tion, noise contains interesting and abundant information.
Advances in experimental techniques gradually allowed us
to enter the quantum regime and access this information
through noise measurements in various setups, ranging
from nanocircuits [1–7] or quantum optics devices [8] to
bosonic and superfluid systems in cold atomic settings [9].
Noise can reveal the quantum statistics and the charge of
quasiparticles as well as the nature of their interactions. The
bunching of photons in quantum optics, e.g., reflects the
bosonic nature of light [10], while the complete suppres-
sion of noise, in the case of a perfectly transmitting
conductance channel in a nanocircuit [11], is a consequence
of electrons being fermions.
Low temperature noise has been used to extract the

transmission amplitudes of a point contact [5,12,13] and
also to gain insight into the structure of quantum fluctua-
tions [1,14]. In such interacting nanocontacts, the shot
noise carries information on the structure of residual
interactions and elementary excitations. For example, the
noise of a back-scattered current in quantum-Hall devices
has been used, e.g., to extract the fractional charge e� of
excitations at fillings ν ¼ 1=3 [15,16] or ν ¼ 2=3 [17].
Furthermore, in a strongly-interacting Fermi liquid, reali-
zed, e.g., in a quantum dot (QD) attached to normal
electrodes at very low temperatures, the noise of the
back-scattered current is induced by interactions, and the
corresponding effective charge, e� ¼ 5e=3 turns out to
reflect the structure of local interactions rather than that of
elementary excitations [4,18–20].
Superconductors, from this perspective, are of particular

interest; while they obviously carry current, elementary

excitations in a superconductor do not have a definite
charge and possess only spin. In particular, attaching a
superconductor to normal electrodes destroys the charge
of electrons in its neighborhood by the proximity effect [21],
and this too makes the charge ill-defined. Here we wish to
understand the structure of the low temperature electric noise
of these chargeless excitations in the presence of strong
interactions. For this purpose, we propose to study the
superconductor-quantum dot-normal metal (S-QD-N) sys-
tem depicted in Fig. 1, and which was investigated exper-
imentally and theoretically by several groups [22–27]. The
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FIG. 1. (a) Subgap states of the S-QD system depicted in the
inset. At J ¼ J c, a parity-changing transition occurs. For
J > J c, the ground state is a many-body singlet j0i, while
for J < J c, it is a doublet jσi. (b) We consider a localized spin
strongly coupled to a superconductor (S) and weakly to a normal
(N) lead. (c) Andreev scattering processes in the Fermi liquid
state: an electron is reflected as a hole, while a Cooper pair is
transmitted to the S-QD device.
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setup consists of an artificial atomattachedmore strongly to a
superconductor, and probed by a weakly coupled normal
electrode or a scanning tunneling microscope tip.
As we discuss below, at very low temperatures, this

system becomes a Fermi liquid of chargeless quasiparticles.
Nevertheless, we can still describe it in terms of the
Noziéres’ Fermi liquid theory [28], generalized for the
Anderson model [29]. Surprisingly, in the limit of maximal
conductance, the current through this device turns out to be
almost “noiseless,” up to (and including) OðV3Þ order.
Moving slightly away from this sweet point, the shot noise
S is found to be generated by the back-scattering current δI
[18,30,31], yielding an effective charge

e� ¼ S
δI

¼ 2eþ � � � : ð1Þ

In stark contrast to regular Fermi liquids [18,32], this charge
appears to be related only to the fact that electrons enter the
superconductor as Cooper pairs and, unexpectedly, is not
influenced by the otherwise strong interactions—a predic-
tion that could easily be verified experimentally [33,34].
Model.—Throughout thiswork,we shall focus on the local

moment regime, where there is just a single electron on the
QD, which can be described as a single spin S ¼ 1=2,
coupled antiferromagnetically to the two electrodes by an
exchange coupling (see Fig. 1).
In the absence of the normal electrode [Fig. 1(a)], the

spin on the dot binds a quasiparticle to itself antiferro-
magnetically, appearing as an excited singlet state j0i inside
the gap [35] for small exchange couplings, J [36]. With
increasing J , the quasiparticle’s binding energy becomes
larger, and the energy of this so-called Shiba state drifts
towards zero until at a critical value, J ¼ J c, the exchange
energy gain becomes larger than the quasiparticle gap, the
energy of j0i becomes smaller than that of the doubly
degenerate spin states j�i (dressed by the superconductor)
[37], and a parity changing, quantum phase transition
occurs [23,26,38–42]. Coupling the QD weakly to a normal
electrode at J ≈ J c induces strong quantum fluctuations
between the states j�i and j0i, and this leads to a strongly
correlated local Fermi liquid state [28,50,51] with a close to
perfect transmission and conductance [52] G ≈ 4e2=h.
Though our conclusions turn out to be quite general,
throughout this Letter, we focus on the vicinity of this
transition and further assume that the tunneling rate Γ
between the QD and the normal electrode is much smaller
than the superconducting gap, Γ ≪ ΔS. Then tunneling can
be described just in terms of the three states, j0i and jσi,
and a simple Hamiltonian [42]

H ¼ ΔE
�X

σ

jσihσj − j0ih0j
�
þHv þHψ : ð2Þ

Here, the first term describes the level crossing in Fig. 1,
with ΔE ¼ Eσ − E0 ∝ J − J c vanishing at the transition
point, while the last term Hψ accounts for electrons in the
normal electrode. The second term

Hv ¼
X
σ

½jσih0jðvþσ ψσ − v−σ̄ ψ
†
σ̄Þ þ H:c:�; ð3Þ

generates tunneling between the normal electrode and the
QD, with the operator ψσ removing a conduction electron
of spin σ from the normal electrode [53]. This tunneling
induces quantum fluctuations between the states jσi and
j0i, and this turns the parity changing transition in Fig. 1(a)
into a crossover with resonant features. The structure of Hv
follows simply from symmetry considerations: the states
jσi have a well-defined spin and a well-defined charge
parity, but they do not have a well-defined charge, and
possess both holelike and electronlike components.
Therefore, both spin ↑ electrons and spin ↓ holes can
tunnel into the state j↑i from the normal electrode.
Furthermore, electron-hole symmetry and time-reversal
symmetry imply the relations vþσ ¼ v−↑ ¼ −v−↓ ¼ v for
the tunneling matrix elements [54].
We can simplify the problem further by introducing new

fields, Φσ ∼ vþσ ψσ − v−σ̄ ψ
†
σ̄ , and rewriting the tunneling

Hamiltonian as

Hv ¼ v
X
σ

ðjσih0jΦσ þ H:c:Þ:

Clearly, in terms of this new field, our Hamiltonian (3) is
just the mixed valence Anderson model [55]. Notice,
however, that this mapping is only valid in equilibrium.
Biasing the S-QD-N junction affects the hole and electron
components of the field Φσ differently. Note also that,
although the fields Φσ have no charge, the Hamiltonian
conserves a corresponding “pseudocharge,” ~Q [56].
Fermi liquid theory.—The ground state of the Anderson

model is a famous example of a local Fermi liquid. At
temperatures and voltages below the so-called Fermi liquid
scale, eV; kBT ≪ TFL, one can follow Landau and
Nozières [28], and describe its low temperature (low bias)
behavior in terms of weakly and locally interacting qua-
siparticles bεσ created by the field Φσ. Although Fermi
liquid theory has been well-known since the seminal work
of Nozières [28], it has only recently been extended to the
Anderson model [29]. The structure of the Fermi liquid
Hamiltonian follows from symmetries: it must conserve
spin and the pseudo charge ~Q; however, unlike Nozières’
original theory [28], it is not “electron-hole” symmetrical in
terms of ~Q [57]. Its relevant terms can be identified by
power counting, yielding the simple structure

HFL¼
X
σ

Z
ε
εb†εσbεσþHαþHϕþ���

Hα¼−
X
σ

Z
ε1;ε2

�
α1
2π

ðε1þε2Þþ
α2
4π

ðε1þε2Þ2
�
b†ε1σbε2σ

Hϕ¼
Z
ε1;…;ε4

�
ϕ1

π
þϕ2

4π

�X4
i¼1

εi

��
∶b†ε1↑bε2↑b

†
ε3↓

bε4↓∶: ð4Þ
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Here, ∶…∶ denotes normal ordering, and the annihilation
operators, bεσ destroy scattering states with the incoming
and outgoing parts behaving as ΦσðrÞ ∼ e−irke−irkF and
∼SσeikreirkF , respectively, with kF the Fermi momentum,
k ¼ ε=vF, and Sσ ¼ e2iδσ the scattering amplitude. The
terms in Hα generate energy dependent phase shifts, while
the last two terms account for interactions, and are
responsible for inelastic scattering. All Fermi liquid coef-
ficients are functions of Γ and ΔE, with the hybridization
providing the natural Fermi liquid scale throughout the
parity-changing transition, TFL ∼ Γ ∼ v2 [58]. Importantly,
α1, ϕ1 ∼ 1=Γ, while α2, ϕ2 ∼ 1=Γ2, but apart from these
prefactors, they are all universal functions of the ratio
ΔE=Γ (see [42] for more details).
Current and noise.—We now use the Fermi liquid theory

outlined above to study nonequilibrium transport and noise.
Our main purpose is to determine the expectation value and
the noise of the current ÎðrÞ ¼ evF

P
σ½ψ†

σð−rÞψσð−rÞ −
ψ†
σðrÞψσðrÞ� at someposition r > 0, at low temperatures, and

small bias voltages. For simplicity, we now focus on the case
of electron-hole symmetry. Then, the connection between
ψ↑=↓ and Φ↑=↓ simplifies, and the current operator becomes

ÎðrÞ¼ evF½b↓ð−rÞb↑ð−rÞ−S↓b↓ðrÞS↑b↑ðrÞþH:c:�; ð5Þ

where we introduced the auxiliary quasiparticle fields
bσðxÞ≡

R
dεeikxbεσ and made use of the asymptotic struc-

ture of scattering states. Since bεσ represents incoming
scattering states, expectation values of their products are
determined by the normal electrodes (see [42]). This enables
us to compute hÎi, or its correlation functions, perturbatively
in the interaction terms of Eq. (4) using diagrammatic
methods.
We now focus on the nonequilibrium regime, where the

temperature is much smaller than the applied voltage bias,
eV ≫ T ≈ 0. There the zeroth order expectation value of
the current, e.g., simply yields hÎi ¼ G0V þ � � �, where the
linear conductance recovers the known expression for
noninteracting electrons [11]

G0 ¼
2e2

h
½1 −ℜeðS↓S↑Þ� ¼

4e2

h
sin2ðδ↑ þ δ↓Þ; ð6Þ

with δσ the phase shifts of the (chargeless) quasiparticles at
the Fermi energy, Sσ ¼ e2iδσ . In the absence of magnetic
field δ↑ ¼ δ↓ ¼ δ0, it is just a function of ΔE=Γ, smoothly
crossing over from 0 to π=2, and thereby producing a
conductance resonance at ΔE ≈ 0 (see Fig. 4).
Let us first focus on the “unitary point,” δ0 ¼ π=4. There

every incoming electron is perfectly reflected as a hole, and
we find a noiseless current even in the presence of
interactions (at least up to third order in the voltage V),
similar to a perfectly transmitting, noninteracting point
contact [59]. To determine the effective charge of the
carriers, we therefore need to move slightly away from this

unitary limit and, similar to Refs. [17,18,31], investigate the
backscattered current, δÎ, defined as the correction with
respect to the maximal current, Iu ¼ 4e2V=h.
Close to the unitary (resonant) point of maximal con-

ductance, δ0 → π=4þ ~δ, we can gain insight to the
structure of the backscattered current perturbatively. At
the level of the effective field theory, we can induce the
change in the phase shift by adding a term,
~Hδ ¼ −ð~δ=πÞPσ

R
ε;ε0 b

†
εσbε0σ , and we can treat its effect

similarly to the other terms in Eq. (4). To see how ~δ
generates the backscattered current, we rewrite ~Hδ in terms
of “charged" unitary quasiparticle operators, aε↑=↓ ¼
ðbε↑=↓ ∓ b†−ε↓=↑Þ=

ffiffiffi
2

p
as

~Hδ ¼ −ð~δ=πÞ
X
σ

Z
ε;ε0

ða†ε↑a†ε0↓ þ H:c:Þ:

The word “charged” must be used with caution: the
operator a†ε↑ creates, namely, a scattering state, which at
time t → −∞ represents an incoming electron of charge e
on the normal side, while for t → ∞, it is a reflected hole of
charge −e. Scattering events generated by the term ~Hδ

convert, e.g., an incoming electron state a†ε↑jFSi into an
incoming hole state a−ε↓jFSi which, for time t → ∞,
represents a reflected electron. These reflected electrons
reduce the transmitted current, and they contribute to the
backscattered current, δÎ (see Fig. 2).
The rate of these backscattering events can be simply

computed by applying Fermi’s golden rule as

Γδ ¼
X
σ

�
2π

ℏ

�Z
ε1ε2

jha†ε2;−σHδa
†
ε1σij2δðε1 þ ε2Þ; ð7Þ

yielding Γδ ¼ 8~δ2eV=h and a backscattering current
δIδ ¼ 2eΓδ. Similarly computing the rates of all scattering
processes perturbatively, we arrive at

S N

S N

(a) (b)
S N

FIG. 2. (a) The “charged” quasiparticles aεσ correspond to
incoming electrons reflected as holes. Each unscattered quasi-
particle therefore transfers a charge of 2e to the superconducting
side. (b) A potential scattering event a†ε↑jFSi → a−ε↓jFSi creates
an outgoing electron state, i.e., a reflected charge, and reduces the
current by 2e.
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hδÎi ¼ 8e2

h
V
�
2~δ2 þ

�
4

3
α2 − ϕ2

�
~δðeVÞ2 þ � � �

�
: ð8Þ

All processes that give contributions to hδÎi to this order
turn out to be such that an incoming electron does not
transfer its charge to the superconductor, but it is reflected
back as an electron or as an electron and an electron-hole
pair. Assuming that these are all independent Poissonian
processes that reduce the current by 2e, we immediately
arrive at the conclusion that the shot noise is just 2ehδIi,
yielding the effective charge (1).
The previous perturbative result can be generalized to

arbitrary values of δ by incorporating the phase shift δ in the
definition of the quasiparticle operators aεσ and the current
operator, and then using the Keldysh approach to perform
perturbation theory in the Fermi liquid coefficients [42].
The leading corrections to the current are shown as an
example in Fig. 3, and yield

hÎi ¼ 2e2

h
V

�
2sin22δ −

πχ0c
3

sin 4δðeVÞ2 þ � � �
�
; ð9Þ

where we made use of a Fermi liquid relation, relating the
derivative of the charge susceptibility of the effective
Anderson model [29] to the Fermi liquid coefficients as,
4
3
α2 − ϕ2 ¼ −πχ0c=3. By expanding this formula around

δ0 ¼ π=4, we recover Eq. (8).
The shot noise can be computed along similar lines [42].

It can be expressed as a power series

SðV;ΔEÞ ¼ 2e3

h
V
X∞
n¼0

snðΔEÞðeV=ΓÞn; ð10Þ

with the first few dimensionless coefficients given
by s0 ¼ sin2 4δ, s1 ¼ 0 and s2 ¼ −Γ2ðπχ0c=3Þ sin 8δ.
Remarkably, at the sweet point of maximal conductance,
δ ¼ δ0 ¼ π=4, both s0 and s2 vanish, and the current
remains noiseless up to ∼ðeV=ΓÞ4 even in the presence
of interactions (see Fig. 4). Similar to the dimensionless
linear conductance, g≡G=G0 ¼ sin2ð2δÞ, the dimension-
less coefficients sn are universal functions of the ratio
ΔE=Γ. These functions can all be determined using Bethe

ansatz or numerical renormalization group calculations
[29], and we have displayed them in Fig. 4.
We are now in the position of expressing the effective

charge e� as a function of ΔE and V,

e�

e
≡ S

eδI
¼ sin24δ − πχ0c

3
sin 8δðeVÞ2 þ � � �

2cos22δþ πχ0c
3
sin 4δðeVÞ2 þ � � � : ð11Þ

For small voltages, this formula yields an effective charge
e� ¼ 2eð1 − δgÞ, while for larger voltages, this value crosses
over to e� ¼ 2eð1 − 2δgÞ, with δg ¼ 1 − sin2ð2δÞ ¼
cos2ð2δÞ representing the reduction of theT ¼ 0 temperature
dimensionless linear conductance with respect to its maxi-
mal, unitary value. Unlike a usual, strongly interacting Fermi
liquid, the effective charge remains close to 2e in the vicinity
of the unitary scattering regime, even beyond the linear
voltage regime. The effective charge of the chargeless Fermi
liquid is thus that of Cooper pairs e� ≈ 2e, and it only slightly
deviates from this value in spite of the strong electron-
electron interactions. This result is not unexpected for the
lowest order, elastic terms in Eq. (11), which are expected,
and it indeed agrees with results on noninteracting S-N
junctions [12] and mean field calculations [22]. They are
completely unexpected in the case of the interaction-gen-
erated terms,∼ðeVÞ2, and are related to the lack of 4e charge
transfer processes.
Although we focused on the local moment regime and

restricted ourselves to Γ < ΔS, most of our results are quite
general. In fact, our Fermi liquid approach does not rely on
these assumptions, and it gives a valid description for
temperatures and voltages below the Fermi liquid scale,
feV; kBTg ≪ TFL. Our results do not depend on the
asymmetry of the junction either, and they are barely
influenced by other external perturbations too. An external
magnetic field, e.g., splits the phase shifts δ↑;↓, but the
expressions above depend only on the sum, δ↑ þ δ↓, and

(a)

(b)

FIG. 3. First order diagrams describing the corrections to the
current (a) and to the noise (b). Open circles represent current
vertices, while filled dots correspond to interaction vertices. Only
nonvanishing contributions are displayed.
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FIG. 4. Dimensionless conductance (top panel) and the first
nonvanishing dimensionless noise coefficients, s0 and s2 (bottom
panel). The coefficient s2 is magnified 10 times. The noise
coefficients vanish at the point of maximal conductance,
ΔE ¼ ΔE�, where δ ¼ δ0 ¼ π=4.
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are therefore independent of the applied field to the order
discussed here. We only assumed electron-hole symmetry,
a valid assumption for a half-filled quantum dot levels. We
expect, however, that even electron-hole symmetry break-
ing just reduces the value of the maximum conductance, but
it should not influence the effective charge e⋆ ≈ 2e at the
transition [60].
Measuring the effective charge should be possible with

current-day technology. Indeed, Shiba transitions in half-
filled quantum dots have been demonstrated by several
groups [23,25,61] for typical quantum dot parameters [62].
Since tuning the tunneling rates is a part of the usual
modern architecture [23,25], it should be possible to reach
the Fermi liquid regime, kBT < Γ, and verify our predic-
tions without much difficulty.
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