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We demonstrate that, apart from the chiral anomaly, Dirac semimetals possess another quantum
anomaly, which we call the mirror anomaly and which manifests in a singular response of the Dirac
semimetal to an applied magnetic field. Namely, the anomalous Hall conductivity exhibits step-function
singularities when the field is rotated. We show that this phenomenon is closely analogous to the parity
anomaly of (2þ 1)-dimensional Dirac fermions, but with mirror symmetry, which we demonstrate emerges
near any Dirac point at a time reversal invariant momentum, replacing the parity symmetry.
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The response of topologically nontrivial states of matter,
both insulating and metallic, to external fields may often be
understood in terms of quantum anomalies [1–6], which is
a concept that originated in particle physics [7,8] but has
now found its way into condensed matter. Anomaly in the
particle physics context refers to the violation of a
“classical” symmetry, i.e., symmetry of the Lagrangian,
once the second quantization is performed. For example,
perhaps the most well known of quantum anomalies, the
chiral anomaly, arises due to the violation of the chiral
symmetry of a massless Dirac Lagrangian.
It is well established [9–15] that the chiral anomaly leads

to observable manifestations in condensed matter realiza-
tions of massless chiral particles, i.e., in Dirac and Weyl
semimetals [16–32]. In particular, both the anomalous Hall
effect in magnetic Weyl semimetals and the negative
longitudinal magnetoresistance, or the chiral magnetic
effect [33], in both Weyl and Dirac semimetals may be
understood as being a consequence of the chiral anomaly.
In this Letter, we demonstrate that Dirac semimetals also

possess another kind of anomaly, which is distinct from the
chiral anomaly and is instead closely related to the parity
anomaly of (2þ 1)-dimensional relativistic fermions. A
parity anomaly in the relativistic context refers to the
violation of the parity (and time reversal) symmetry of a
massless (2þ 1)-dimensional Dirac Lagrangian when a
second quantization in the presence of electromagnetic
fields is performed: A topological Chern-Simons term,
violating parity and time reversal, is generated in the action
when the fermions are integrated out [34]. In condensed
matter realizations of two-dimensional (2D)Dirac fermions,
the parity anomaly has a somewhat different, but closely
related, meaning, referring to a singular step-function
dependence of the anomalous Hall response of a massive
(i.e., gapped) 2D Dirac fermion on the gap magnitude and
sign [1]. Here we show that something very similar happens
in three-dimensional (3D)Dirac semimetals, but withmirror
symmetry, which emerges near any Dirac point at a time

reversal invariant momentum (TRIM), replacing parity. We
thus call the corresponding anomaly themirror anomaly.We
demonstrate that it manifests in a singular response of the
Dirac semimetal to an applied magnetic field and should be
readily observable experimentally.
We will restrict ourselves to a particular kind of Dirac

semimetal, with a single (or several symmetry-related)Dirac
point at a TRIM (type-II Dirac semimetal [21,30]).
Analogous effects should, however, also exist in the second
type of Dirac semimetal, with two Dirac points on a rotation
axis (type-I Dirac semimetal) [22,23]. Experimental real-
izations of type-II Dirac semimetals include TlBiðS1−xSexÞ2
[35], ðBi1−xInxÞ2Se3 [36], and ZrTe5 [15,37].
A minimal model of a Dirac band-touching point at a

TRIM in 3D involves four degrees of freedom per unit cell:
two orbital and two spin. We introduce two sets of Pauli
matrices τi and σi, which will represent operators acting on
the orbital and spin degrees of freedom, correspondingly. In
the presence of inversion symmetry, the two orbital states
may always be chosen to be related to each other by the
parity operator P. We thus take the orbital states to be the
eigenstates of τz, in which case the parity operator P ¼ τx.
The most general time reversal and parity invariant

momentum space Hamiltonian, describing the above sys-
tem, may be written as [38]

HðkÞ ¼ d0ðkÞ þ
X5
a¼1

daðkÞΓa; ð1Þ

where Γa are the five matrices, realizing the Clifford
algebra fΓa;Γbg ¼ 2δab, even under the product of parity
and time reversal PT. Explicitly, the five Γ matrices are
given by

Γ1 ¼ τx; Γ2 ¼ τy; Γ3 ¼ τzσx;

Γ4 ¼ τzσy; Γ5 ¼ τzσz; ð2Þ
where Γ1 is even under both parity and time reversal, while
Γ2–5 are odd under both separately but even under their
product.

PHYSICAL REVIEW LETTERS 120, 016603 (2018)

0031-9007=18=120(1)=016603(5) 016603-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.016603&domain=pdf&date_stamp=2018-01-05
https://doi.org/10.1103/PhysRevLett.120.016603
https://doi.org/10.1103/PhysRevLett.120.016603
https://doi.org/10.1103/PhysRevLett.120.016603
https://doi.org/10.1103/PhysRevLett.120.016603


Suppose Dirac band-touching points are realized at a
crystal symmetry-related set of TRIM. For simplicity, let us
take the TRIM to be at the Γ point in the first Brillouin zone
(BZ), in which case this is a single point (such a Dirac node
may arise only through fine-tuning and cannot be crystal
symmetry protected [21]). Generalization to the case of
multiple symmetry-related TRIM is straightforward, and
the results do not change in a qualitative way. A Taylor
expansion of Eq. (1) near the Γ point will have the
following general form, in which we use relativistic
Dirac matrix notation:

HðkÞ ≈ ðαþ βγ0Þk2 þ vFγ0ðγ1kx þ γ2ky þ γ3kzÞ; ð3Þ
where α, β, and vF are expansion coefficients and we have
assumed cubic symmetry for notational simplicity (this
does not affect any of the arguments below). We will use
ℏ ¼ 1 units throughout, except in the final results. Since Γ1

is the only parity and time reversal invariant Γ matrix, we
have γ0 ¼ Γ1 ¼ τx. The other three matrix coefficients in
Eq. (3), γ0γi, i ¼ 1, 2, 3, may in general be given by any
three independent linear combinations of the Γ2–5 matrices.
Let us view Eq. (1) as a lattice Fourier transform of a

tight-binding Hamiltonian. Then it is clear that the physical
origin of the term, proportional to Γ2, is spin-independent
hopping between the two orbital states, labeled by the
eigenvalues of τz, and located in different (e.g., neighbor-
ing) unit cells, while the physical origin of the terms,
proportional to Γ3;4;5, are spin-dependent hopping terms,
which arise due to the spin-orbit interactions. It follows
that, for any physical realization of a Dirac semimetal, the
Γ2 ¼ τy matrix will always be present in the Taylor
expansion of the Hamiltonian Eq. (3) at linear order.
Indeed, restricting the spin-independent hopping to near-
est-neighbor sites for simplicity, the coefficient d2ðkÞ of the
matrix Γ2 in Eq. (1) has the following general form:

d2ðkÞ¼−t1 sinðk ·a1Þ− t2 sinðk ·a2Þ− t3 sinðk ·a3Þ; ð4Þ
where a1;2;3 are the primitive translation vectors of the
Bravais lattice and t1;2;3 are the hopping amplitudes,
corresponding to the directions a1;2;3. Expanding to linear
order near an arbitrary TRIM Γ, we then obtain

d2ðΓþ δkÞ ≈ −δk ·
X3
i¼1

tiai cosðΓ · aiÞ: ð5Þ

The TRIM may generally be written as half a reciprocal
lattice vector Γ ¼ ðm1b1 þm2b2 þm3b3Þ=2, where bi are
primitive translation vectors of the reciprocal lattice and mi
are integers. Then cosðΓ · aiÞ ¼ cosðπmiÞ ¼ ð−1Þmi . It then
follows from the linear independence of the primitive trans-
lation vectors ai that the linear term in the Taylor expansion
of d2ðkÞ near any TRIM Γ is always nonvanishing.
To understand the consequences of this, let us consider

the chirality operator γ5 ¼ iγ0γ1γ2γ3. It is even under time

reversal but odd under parity and thus must have the
following general form:

γ5 ¼ ατz þ βiτ
yσi; ð6Þ

where i ¼ x, y, z. By rotating spin quantization axes, we
may always bring Eq. (6) to the following form:

γ5 ¼ ατz þ βτyσz: ð7Þ
The property that the Γ2 ¼ τy matrix is always present at
linear order in the Taylor expansion of the Hamiltonian
implies that the coefficient β in Eq. (7) is always nonzero;
i.e., γ5 always involves one of the spin components. Indeed,
γ5 can only be spin independent if, up to all possible
permutations of x, y, and z, γ1 ∝ σx, γ2 ∝ σy, and γ3 ∝ σz.
This, however, is impossible, as demonstrated above, since
at least one of the γi must involve a spin-independent
contribution. Equation (7) implies that only one of the spin
components commutes with γ5, while the other two do not.
This has significant consequences for the Zeeman response
of the Dirac semimetal to an applied magnetic field, as will
be demonstrated below.
To proceed, let us consider a specific Dirac Hamiltonian,

satisfying the properties described above. Let us assume
that we have a single Dirac point at k ¼ 0 and the Taylor
expansion of the functions daðkÞ near this point has the
following form:

d1ðkÞ ≈
Δk2

2
; d2ðkÞ ≈ vFkz; d3ðkÞ ≈ vFky;

d4ðkÞ ≈ −vFkx; d5ðkÞ ≈
λ

2
ðk2z − k2xÞky; ð8Þ

which arises, e.g., in the Fu-Kane-Mele diamond lattice
model [38]. We have assumed the Fermi velocities to be the
same in all directions for simplicity and have also taken
d0ðkÞ ¼ 0, as it will not affect any of the arguments or the
final results in a significant way. This corresponds to the
following representation of the Dirac gamma matrices:

γ0 ¼ τx; γ1 ¼ iτyσy; γ2 ¼ −iτyσx;

γ3 ¼ iτz; γ5 ¼ τyσz: ð9Þ

We now note the following property of the Dirac
Hamiltonian, which will play a crucial role in what follows.
Namely, the linearized Dirac Hamiltonian

HðkÞ ¼ vFð−τzσykx þ τzσxky þ τykzÞ ð10Þ

commutes with the operator M ¼ iσx in the kx ¼ 0 plane

½Hðkx ¼ 0Þ;M� ¼ 0: ð11Þ

To understand the physical meaning of the operator M, we
recall the connection between the gamma matrices and
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generators of rotations. In particular, the generator of
rotations about the x axis is given by

σ32 ¼ i
2
½γ3; γ2� ¼ τxσx; ð12Þ

which implies M is the operator of reflection in the yz
(kx ¼ 0) plane

M ¼ PRx
π ¼ iγ0σ32 ¼ iσx: ð13Þ

Thus, we come to the conclusion that the linearized Dirac
Hamiltonian Eq. (10) possesses mirror symmetry in the yz
plane (the same is true of the xz plane as well, of course).
The cubic term d5ðkÞτzσz violates this mirror symmetry,
and thus the symmetry is only an approximate low-energy
symmetry (it may be an exact crystalline symmetry as well
but, in general, is not). We will see shortly that this
emergent mirror symmetry of the Dirac point leads to
important observable consequences for the magnetic
response of Dirac semimetals.
Let us now assume that an external magnetic field is

applied to the Dirac semimetal, which may be rotated in
any direction. For concreteness, let us assume that the field
is rotated in the xz plane and consider the anomalous Hall
conductivity in the xy plane, σxy, as a function of the angle
θ of the field with respect to the z axis. By anomalous Hall
conductivity, we mean here the part of the total Hall
conductivity which arises from the Zeeman splitting effect
of the magnetic field, as opposed to the orbital effect (the
Lorentz force). The two may be separated experimentally in
the standard way by subtracting off the high-field linear
part of the Hall resistivity.
In order to understand what happens as the field is

rotated, we first note that, while σz commutes with the
chirality operator γ5 ¼ τyσz, σx;y do not. This is a general
property of Dirac semimetals, as explained above. As a
consequence of this, the applied magnetic field will have a
very different effect on the spectrum, depending on its
direction: While the field, directed along the z axis, will
split the Dirac node into a pair of Weyl nodes (as it
conserves the chiral charge), the field along the x or y
direction will have a more complex effect.
To see what happens in detail, let us find how the

spectrum of the Dirac Hamiltonian, perturbed by the
applied magnetic (Zeeman) field

HðkÞ ¼ vFð−τzσykx þ τzσxky þ τykzÞ
þ b cos θσz þ b sin θσx; ð14Þ

where b ¼ gμBB, evolves as a function of the angle θ.
Diagonalizing Eq. (14), one obtains the eigenstate energies

ϵsrðkÞ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fðk2x þ k2ycos2θÞ þm2

rðkÞ
q

; ð15Þ

where s; r ¼ � and

mrðkÞ ¼ bþ rvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ysin2θ þ k2z

q
: ð16Þ

For any θ ≠ π=2, the two r ¼ − bands touch at two Weyl
points, located on the z axis at kz ¼ �b=vF. The Fermi
velocity, characterizing the dispersion away from the two
points is, however, anisotropic:

vFx ¼ vFz ¼ vF; vFy ¼ vFj cos θj: ð17Þ
When θ ¼ π=2, vFy vanishes, and the r ¼ − bands touch
along a nodal line in the yz plane, given by the equation

k2y þ k2z ¼ b2=v2F: ð18Þ

The nodal line is protected by the emergent mirror
symmetry with respect to reflections in the yz plane and
describes a critical state, at which the chiralities of the two
Weyl points at kz ¼ �b=vF interchange as the magnetic
field is rotated through the mirror-symmetric angle
θ ¼ π=2; see Fig. 1.
Now suppose the Fermi energy coincides with the Dirac

point in the absence of the magnetic field, i.e., ϵF ¼ 0. The
anomalous Hall conductivity as a function of the angle will
then have the following form:

σxyðθÞ ¼
e2

h
2b=vF
2π

sgnðcos θÞ: ð19Þ
This equation bears a close resemblance to the equation for
the Hall conductivity of a massive 2D Dirac fermion of
mass m:

σxy ¼
e2

2h
sgnðmÞ: ð20Þ

Equation (20) expresses the parity anomaly of 2D Dirac
fermions [1,34], namely, the property that, when m → 0
from above or below, the Hall conductivity does not vanish,

(a) (b)

(c)

FIG. 1. Evolution of the Weyl nodes in the presence of the
mirror symmetry in the yz plane (λ ¼ 0). (a) Two Weyl nodes on
the z axis for all 0 < θ < π=2. (b) Nodal line at θ ¼ π=2. This is a
critical state, at which chiralities of the two Weyl nodes on the z
axis change signs. (c) Weyl nodes have exchanged chiralities for
π=2 < θ < π.
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which apparently contradicts the time reversal and parity
symmetry of the massless 2D Dirac Hamiltonian. In our
case, the Hall conductivity does not vanish as the angle θ
approaches the mirror-symmetric value θ ¼ π=2 from
above or from below, although exactly at θ ¼ π=2 the
Hall conductivity must vanish by symmetry.
This resemblance to the parity anomaly is not accidental

and may be understood as follows. As is well known, the
Weyl nodes, which exist in this system for all θ ≠ π=2, are
monopoles of the Berry curvature, at which the Chern
number, characterizing 2D sections of the BZ,
perpendicular to the line, connecting a pair of Weyl nodes,
i.e., the z axis in our case, changes by the Weyl node charge
upon crossing its location. In our case, at θ ¼ π=2 the two
Weyl nodes interchange their topological charge, which
means that the Chern numbers of 2D BZ slices,
perpendicular to the z axis, change sign everywhere.
Such a sign change requires two 2D Dirac fermions
changing the sign of their mass simultaneously at θ ¼
π=2 at every value of kz in between the Weyl node
locations. These two massless 2D Dirac fermions are
located at the intersections of the line node with fixed-kz
sections of the BZ. We note that similar ideas have also
been proposed in relation to Dirac nodal lines in PT-
symmetric materials in Ref. [39].
So far, we have analyzed the linearized Dirac

Hamiltonian Eq. (14). As explained above, such a linear-
ized Dirac Hamiltonian possesses an emergent mirror
symmetry in the yz plane, which is what protects the nodal
line at θ ¼ π=2. Let us now see what happens when we
include the cubic term d5ðkÞτzσz, that violates this mirror
symmetry [we will ignore the quadratic term d1ðkÞτx, since
it does not violate mirror symmetry and thus does not lead
to any qualitative changes]. Equations (15) and (16) are
modified, respectively, as

ϵsrðkÞ
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
xþ½vF cosθ− λsinθðk2z − k2xÞ=2�2k2yþm2

rðkÞ
q

ð21Þ

and

mrðkÞ ¼ bþ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
z þ½vF sinθþ λcosθðk2z − k2xÞ=2�2k2y

q
:

ð22Þ
The modified spectrum now does not have a nodal line for
any values of the angle θ. There is now always a pair of
Weyl nodes on the z axis at kz ¼ �b=vF. In addition, there
may exist four other Weyl nodes away from the z axis in the
yz plane, whose location is given by

kz ¼ � b
vF

ffiffiffiffiffiffiffiffiffiffi
cot θ
δ

r
; ð23Þ

and

ky ¼ � b sin θ
vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

cot θ
δ

r
; ð24Þ

where δ ¼ λb2=2v3F is a parameter that defines the degree
of the mirror symmetry violation (we assume λ > 0). The
extra Weyl points appear on the z axis at kz ¼ �b=vF (i.e.,
they split off the two original Weyl nodes that stay on the
z-axis) at a critical angle

θc ¼ arccotðδÞ: ð25Þ
At this point, the topological charges of the two z-axis Weyl
nodes change signs. The extra four nodes then move away
from the z axis as θ is increased and mutually annihilate on
the y axis at ky ¼ �b=vF when θ ¼ π=2; see Fig. 2. The
step-function singularity in the anomalous Hall conduc-
tivity, Eq. (19), is then broadened as

σxy ¼
e2b
πhvF

8>>><
>>>:

1; 0 ≤ θ ≤ θc;

2
ffiffiffiffiffiffiffi
cot θ
δ

q
− 1; θc ≤ θ ≤ π=2;

−1; π=2 ≤ θ ≤ π;

ð26Þ

which is illustrated in Fig. 3. The magnitude of the
broadening is determined by the parameter δ, which, in
principle, may be made arbitrarily small by decreasing the
magnitude of the applied field. Even when broadened by a
finite δ, the dependence of the anomalous Hall conductivity
on the angle θ in Eq. (26) is highly unusual. Indeed, one
would normally expect the magnitude of σxy to be
determined by the out-of-plane component of the magnetic
field, i.e., b cos θ, and be simply proportional to it at low
fields. Instead, at low fields, σxy is proportional to the total
magnitude of the field b, except in a narrow interval

(c)

(a) (b)

FIG. 2. Evolution of the Weyl nodes without the mirror
symmetry in the yz plane (λ > 0). (a) Two Weyl nodes on the
z axis for 0 < θ < θc. (b) Two additional pairs of Weyl nodes
split off from the z axis and move towards the y axis for
θc < θ < π=2. The two Weyl nodes on the z axis change their
chiralities at θ ¼ θc. (c) The four additional Weyl nodes anni-
hilate on the y axis at θ ¼ π=2, and the two Weyl nodes with
interchanged chiralities remain on the z axis for π=2 < θ < π.
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θc < θ < π=2, in which the dependence on θ is
nonanalytic.
In conclusion, we have demonstrated that Dirac semi-

metals possess the mirror anomaly, which is distinct from
the chiral anomaly and which manifests in a singular
response of the Dirac semimetal to an applied magnetic
field. While we have considered only the simplest model of
a Dirac semimetal, with a single Dirac point at a TRIM, we
do not expect the results to change qualitatively in the
presence of several symmetry-related Dirac points. The
effect we have described has some potential for techno-
logical application: The extreme sensitivity of σxy to the
direction of the applied field near the mirror-invariant angle
θ ¼ π=2 suggests transistorlike action.
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of the step-function singularity in σxy. The solid line corresponds
to δ ¼ 0.1, while the dashed line to δ ¼ 0.5.
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