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We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a
trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven
optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can
be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical
motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving
exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on
modulations of the cavity field and estimate the full covariance of the resulting two-mode state by
observing its transient decay during subsequent free evolution.
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The description of a harmonic oscillator with negative
mass applies to collective excitations in diverse nonequili-
brium systems, such as solid-state crystals [1], plasmas
[2,3], superfluids [4], and cold atomic gases [5,6]. The total
Hamiltonian describing a negative-mass harmonic oscil-
lator has the opposite sign of that of a positive-mass
oscillator, resulting in an inverted energy spectrum, where
an increased oscillation amplitude lowers the total energy.
When a negative-mass oscillator is coherently coupled to a
positive-mass oscillator at nearly the same frequency, the
two-oscillator system can undergo an instability, where the
transfer of energy between them leads to unbounded
growth of the amplitudes of both oscillators. This neg-
ative-mass instability has been observed in the classical
mechanics of trapped plasmas [7] and ion traps [8] and has
been suggested to play a role in galactic structure [9].
Negative-mass oscillators also play an important role in

quantum science. Glauber proposed that a negative-mass
oscillator coupled to a zero-temperature bath would,
through the negative-mass instability, function as an ideal
quantum amplifier [10]. Joint measurement of resonant, but
uncoupled, positive- and negative-mass oscillators allows
for continuous measurement in a backaction-free subspace
[11,12], recently demonstrated [13,14] as a method to
circumvent standard quantum limits for position and force
detection. Weak coupling of such modes, below the
instability threshold, has been proposed for generation of
steady-state, two-mode entanglement [15].
In this Letter, we report experimental realization of the

negative-mass instability in a fully quantum, optodynam-
ical system. Following Glauber [10] and recent experiments
[14,16,17], the collective spin of an atomic gas with
magnetic moments polarized opposite an applied magnetic
field can be approximated as a negative-mass oscillator.

The positive-mass oscillator is provided by the center-of-
massmotion of the same trapped atomic gas, cooled initially
near its ground state. A single-mode optical cavity intro-
duces a third quantum element, which couples to each
oscillator through magneto-optical and optomechanical
interactions, respectively. This cavity field both mediates
interactions between the two oscillators, leading to a
collective spin-orbit coupling within the atomic gas, and
facilitates continuous measurement of the hybrid system,
with precision near the standard quantum limits [18]. We
observe amplification of both oscillators by the negative-
mass instability, which, similar to a nondegenerate para-
metric amplifier, induces strongly correlated excitations in
bothmodes.We estimate the covariance of the resulting two-
mode state from measurements of its transient decay during
subsequent free evolution. The observed gain and correla-
tion amplitude are described well by a linearized model of
the hybrid optodynamical system.
To illustrate the negative-mass instability, consider a

system of two harmonic oscillators, described by unitless
bosonic operators â and b̂, evolving at frequencies ωm ¼
ω0 þ δ=2 and ωs ¼ ω0 − δ=2, and let ϵ represent the sign
of the second oscillator’s mass. If coupled by a spring of
strength Ω, the resulting dynamics are described by the
interaction-picture Hamiltonian

HI ¼
ℏΩ
2

ðâ†b̂eiðωm−ϵωsÞt þ â†b̂†eiðωmþϵωsÞt þ H:c:Þ: ð1Þ
For nearly resonant oscillators, under the rotating-wave
approximation, this interaction hybridizes their dynamics
into coupled normal modes with eigenfrequencies ω� ¼
ω0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ϵΩ2

p
=2. For positive masses (ϵ ¼ þ1), the

interaction results in a familiar avoided crossing in the
energy spectrum and facilitates resonant exchange of
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excitations [Fig. 1(a)], conserving the total excitation
number.
However, when the mass of the second oscillator is

negative (ϵ ¼ −1), the pair-creation and pair-annihilation
terms of the interaction are resonant [Fig. 1(b)], driving
amplification of both oscillators. For strong coupling
(jΩj > jδj), the normal-mode eigenvalues become complex,
indicating the onset of the negative-mass instability. In this
condition, the oscillation frequencies of the normal modes,
described byRe½ω��, synchronize,while the instability gain,
described by G� ¼ 2Im½ω��, indicates exponential ampli-
fication of one mode and damping of the other [19]. For
resonant coupling (δ ¼ 0), the amplified normal mode
describes correlated motion of the two oscillators with a
relative phase of π=2. The resulting dynamics are similar to
two-mode parametric amplification observed in driven
optical four-wave mixing and down-conversion [20], which
gives rise to the same equations ofmotion in a rotating frame
defined by the optical pump [21].
We experimentally realize the negative-mass instability

using a gas of about 3000 87Rb atoms, cooled to about 3 μK
by rf evaporation and trapped in a single antinode of a
standing-wave optical dipole trap (wavelength 842 nm),
resonant with a TEM00 mode of a high-finesse, Fabry-Pérot
optical cavity [22]. For small displacements, the axial atomic
motion is approximately harmonic, with trap frequency ωm
controlled by the dipole trap intensity, defining a positive-
mass, center-of-mass mode with unitless displacement
Ẑm ¼ âþ â† defined in terms of bosonic phonon operators.

The ensemble is initially spin polarized in the jf ¼ 2;
mf ¼ 2i electronic ground state, yielding a total spin
F ∼ 6000. Applying a magnetic field along x, transverse
to the cavity axis, induces Larmor precession in the y-z
plane at frequency ωs. For small, collective excitations of
the total dimensionless spin F̂ away from the magnetic field
axis, the Larmor precession can be approximated as the
motion of a harmonic oscillator, with unitless displacement
defined as Ẑs ¼

ffiffiffiffiffiffiffiffiffi
F=2

p
F̂z ¼ b̂þ b̂† in terms of bosonic

operators [23]. The effective mass of this oscillator is
negative (positive) for a spin precessing near its highest-
energy (lowest-energy) state [17].
The atomic ensemble is probed through its influence on

another TEM00 cavity mode, with half-linewidth κ=2π ¼
1.82 MHz, which is detuned by Δca=2π ¼ −42 GHz from
the atomic D2 transition, realizing an intensity- and spin-
dependent dispersive coupling to circularly polarized light.
Positioning the trapped ensemble at the maximum intensity
gradient of the probe field [Fig. 1(c)], its axial motion
modulates the dispersive interaction, providing linear
coupling to the center-of-mass displacement Ẑm. Optical
coupling to the collective spin arises from the circular
birefringence of the atomic ensemble [24]. For a cavity
driven with circularly polarized light, this birefringence
causes the dispersive coupling strength to depend linearly
on F̂z, the projection of the total spin along the cavity axis,
such that the cavity mode is coupled to one oscillating
component of the transverse spin [25].
Linearizing the collective dynamics for small excitations

around an average cavity photon number n̄, in a frame
rotating at the optical probe frequency ωp, results in an
effective Hamiltonian [26]

H ¼ ℏωmâ†âþ ϵℏωsb̂
†b̂ − ℏΔpcĉ†ĉ

þ ℏ
ffiffiffi
n̄

p ðĉþ ĉ†Þ½gmẐm þ gsẐs� þ ℏn̄gsmẐmẐs; ð2Þ
where Δpc ¼ ωp − ωc is the probe detuning from cavity
resonance, ĉ is the annihilation operator for photons in the
cavity mode, and ϵ ¼ −sgnhF̂xi is the sign of the spin
oscillator’s effective mass. The coupling rates defined here
are gs=2π ¼ −18 kHz, gm=2π ¼ 26 kHz, and gsm=2π ¼
120 Hz for our system.
The coherent interactions between the three modes

described by this Hamiltonian are more complicated
than the model introduced in Eq. (1). However, the two-
mode model can be recovered by adiabatic elimination
of the cavity mode, in the unresolved sideband regime
(κ ≫ ωm, ωs). This results in optodynamical coupling
between the collective motion and spin, with strength
Ωopt ¼ 4gsgmn̄Δpc=ðκ2 þ Δ2

pcÞ [28], in addition to inde-
pendent optodynamical frequency shifts [29,30] and damp-
ing [31–33] of each oscillator.
The final term of Eq. (2) describes an additional, direct

interaction between the motion and spin, which depends

FIG. 1. (a),(b) Energy levels of two nearly degenerate harmonic
oscillators. (a) For positive-mass oscillators, coupling mediates
exchange of excitations, conserving the total excitation number.
(b) For positive- and negative-mass oscillators, the interaction
resonantly drives pair creation, resulting in exponential growth of a
correlated mode. (c) The center-of-mass motion of a harmonically
confined, ultracold atomic ensemble (green), with trap frequency
ωm, represents the positive-mass oscillator. Larmor precession at
frequency ωs of the collective atomic spin near its highest-energy
state, in an appliedmagnetic fieldB ∝ x, approximates a negative-
mass oscillator. Position- and spin-dependent dispersive coupling
to a circularly polarized mode of the optical cavity (red) mediates
coherent interaction between the oscillators and facilitates con-
tinuous measurement of their dynamics.
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only on the mean photon number n̄. This “static” inter-
action arises from the spatial variation of the vector Stark
shift and couples the motion and spin of each atom.
Equation (2) captures the projection of this interaction
onto the collective modes, which, combined with the
optodynamical coupling, results in a net spring strength
Ω ¼ Ωopt þ 2n̄gsm. In addition, there are residual incoher-
ent dynamics, due to weak coupling between the spin and
the thermal motion of each atom in the center-of-mass
frame, which mediate a resonant, incoherent transfer of
energy from the initially polarized spin into the mechanical
bath, resulting in loss of spin polarization and anomalous
diffusion of its precession [26].
Owing to the spin- and position-dependent dispersive

coupling in Eq. (2), the probe field is sensitive to the joint
displacement operator D̂ ¼ gmẐm þ gsẐs, imparting a
state-dependent frequency shift to the effective cavity
resonance. Through this shift, the oscillator dynamics
are imprinted on phase and amplitude modulation of light
transmitted through the cavity. These modulations are
observed using an optical heterodyne detector, with total
cavity photon detection efficiency ε ¼ 9%, from which a
measurement record of D̂ is recovered.
We observe the negative-mass instability by applying a

short optical coupling pulse to initially uncorrelated oscil-
lators and measuring the subsequent free ringdown of the
resulting state (Fig. 2). During the initial preparation, the
oscillator frequencies are well resolved to suppress inter-
actions, while the probe is stabilized on cavity resonance
(Δpc¼0) at a minimal intensity (n̄≈1 [34]). In the final stage
of preparation, the mechanical frequency ωm is adiabatically
ramped in 10 μs to achieve the desired detuning from the
Larmor frequency δ ¼ ωm − ωs [Fig. 2(a)]. The optical
interaction is then quickly turned on for coupling time tc
by increasing the probe intensity and stepping its detuning
Δpc to achieve the desired coupling strength [Fig. 2(b)]. To
observe the transient decay of the correlated two-mode state
after the coupling pulse, the probe intensity is reduced
(n̄ ≈ 4), for improved measurement sensitivity, and the
oscillator frequencies are resolved, by adiabatically ramping
the optical trap back to its initial depth in 10 μs.
The coupled system evolves according to the projection

of the oscillator’s initial states onto the hybrid normal
modes, where, under strong coupling, one mode is ampli-
fied and the other is damped. Because both oscillators start
near their ground states, without well-defined phases, the
absolute phase of the amplified mode is random. Therefore,
each oscillator, observed independently, is driven into an
effective thermal state with increased mean occupation, and
the observed joint displacement hD̂i averages to zero.
However, the growth of correlation between the oscillators
results in motion with a fixed relative phase.
Both the amplification and correlation generated by the

negative-mass instability are clearly captured in the cycle-
averaged mean squared joint displacement

hD̂2icyc ¼ g2mh2â†âþ 1iþ g2sh2b̂†b̂þ 1iþ 4gmgshRe½â b̂�i:

Time evolution of this signal reveals the exponential growth
of both oscillators during coupling, in addition to a sta-
tionary beat due to interference of the resulting two-mode
correlations during subsequent free evolution [Fig. 2(c)].
This beat represents a self-heterodyne measurement arising
from the product of the oscillator amplitudes, which evolves
at their frequency difference, with initial amplitude and
phase reflecting the magnitude and phase of correlation in
the final state.
The instability gain is measured in two ways—from

growth of hD̂2icyc observed during coupling and from
estimates of the resulting two-mode state after variable tc.
Under strong coupling, both normal modes evolve at
approximately the same frequency, such that hD̂2icyc pre-
dominately displays exponential growth at rate Gþ, while
incoherent dynamics driven by the thermal mechanical bath
add diffusive growth to the observed signal. For sufficiently

(a)

(b)

(c)

FIG. 2. Observation of negative-mass instability. (a) Spectro-
gram of total optical modulation observed during the exper-
imental sequence, averaged over 200 iterations. The spectrum
shows components at the Larmor frequency, fixed at ωs ¼
120 kHz (dashed line), and the mechanical frequency, initially
at ωm ¼ 95 kHz, then varied during coupling to achieve the
desired detuning (solid line). The collective spin shows negligible
decay and the motion damps at rate Γm=2π ¼ 2 kHz. (b) Opto-
dynamical coupling strength Ωopt, calculated from the measured
Δpc and n̄. Experiments are performed with a coupling pulse with
average n̄ ¼ 15 and Δpc ¼ 1.4 MHz (blue) and without coupling
(red). (c) The mean squared joint displacement of both oscillators,
captured in the cycle-averaged optical modulation power between
85 and 150 kHz. This signal reflects exponential amplification of
both oscillators while coupled, followed by a stationary beat
during the subsequent free evolution, revealing the transient
decay of correlations created between the two modes. Transients
from changes in the optical probe and trap intensity perturb
measurements near t ¼ 0 and t ¼ tc (light points), which are
excluded from analysis.
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strong optical coupling Ω, near the optimal probe detuning
jΔpcj ¼ κ, the coherent interaction is dominant, resulting in
the onset of instability observed in exponential growth of
hD̂2icyc [Fig. 3(a)]. The instability quickly drives the system
into saturation, but for early times, the coherent growth is
clearly reflected in the curvature of the measured signal.
We explore the instability’s resonance by repeating these

measurements over a range of δ [Fig. 3(b)]. The instability
gain is extracted from the signal by a least-squares fit
to a model describing coherent exponential amplification
with additional diffusive noise, using independent rates to
distinguish the coherent and incoherent dynamics [26]. The
peak instability occurs at a nonzero detuning [Fig. 3(c)],
because independent optodynamical frequency shifts act on
each oscillator in opposite directions, shifting them into
resonance. Inverting the sign of optical coupling Ωopt, with
an equal but opposite Δpc, reveals the effect of the static
coupling as an asymmetry in the observed gain [Fig. 3(d)].

The mean squared displacement, however, lacks spectral
information distinguishing the occupation of each oscillator.
To estimate the final two-mode state v̂ ¼ ðâ†; b̂ÞT from each
experimental iteration, we apply linear matched filters
directly to the free ringdown observed after the coupling
pulse, extracting single-shot estimates for the amplitude and
phase of each oscillator [28,35]. From an ensemble of
measurements, we estimate the second-moment matrix
C ¼ hv̂v̂†i, correcting for correlated contributions from
thermal noise, measurement backaction, and detector shot
noise during the measurement interval [26].
The diagonal components of the Hermitian matrix C

capture the exponential growth of each oscillator’s occu-
pation for increasing tc. The off-diagonal component
describes the amplitude and phase of correlation in the
resulting state, which demonstrates the strong correlation
of excitations added to both oscillators, providing an

(a) (b)

(c) (d)

FIG. 3. (a) Onset of instability, observed in the mean squared
displacement, for increasing optical coupling strength, with n̄ ¼
10 and oscillator detuning δ=2π ¼ 14 kHz. Each trace (offset for
clarity) is the average of around 30 repetitions. Growth saturates
due to the finite cavity linewidth (scale bar) and other non-
linearities. (b) Resonance of instability for varied δ, under
strongest optical coupling in (a). The instability gain Gþ is
extracted by least-square fits (lines) to data at early times.
(c) Gþ (red diamonds) versus δ, compared with predicted
steady-state gain (solid line). The peak instability occurs at finite
detuning, due to optodynamical shifts of each oscillator’s fre-
quency. The larger frequency shift observed might be due to
asymmetric transients, not reflected in the theoretical steady-state
gain. (d) For an inverted probe detuning (Δpc ¼ þ2.0 MHz), the
optodynamical coupling acts opposite the static coupling, result-
ing in reduced peak gain (blue diamonds). Error bars in (c)–
(d) represent combined 1-σ statistical uncertainty from the fit and
systematic error estimated from�10% variations of the fit interval.

(a)

(c)

(b)

FIG. 4. Results of matched-filter analysis. (a) Growth of the
mechanical (red downward triangle), spin (blue upward triangle),
and correlated (yellow squares) occupation as a function of tc,
with δ=2π ¼ 14 kHz and the same optical coupling as Fig. 3(c).
The observed correlated occupation agrees well with the pre-
dicted evolution of the measured initial state at the optimal
detuning (yellow line). Growth saturates near a mechanical
occupation of 100, possibly due to mechanical nonlinearity
of the dipole trap. (b) Correlated occupation and phase versus
δ, after fixed tc ¼ 60 μs. Error bars in (a)–(b) indicate combined
1-σ statistical uncertainty after 200 repetitions and estimated
systematic error from the uncertainties of all filter parameters.
The anomalous frequency shift is similar to that seen in Figs. 3(c)
and 3(d). (c) Comparison between the beat observed in hD̂2icyc
(blue points) and a simulated signal constructed from time
evolution of the estimated two-mode state (black line) for one
typical experimental setting. Shaded regions show 1-σ bounds for
evolution of a maximally-correlated state with the same estimated
individual oscillator occupations. Similar measurements per-
formed without coupling (red points) show evolution of the
initial state.
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independent measure of Gþ unperturbed by the incoher-
ent dynamics [Fig. 4(a)]. This amplitude and phase is
measured across a range of δ, for a fixed tc ¼ 60 μs,
revealing the resonance of the correlation growth, with
the expected correlation phase ϕ ¼ −π=2 at the optimal
detuning [Fig. 4(b)]. We verify these matched-filter
results by reconstructing the mean squared displacement
from time evolution of the estimated covariance matrix C
[Fig. 4(c)].
In conclusion, we have demonstrated cavity-mediated

coupling of the collective spin and motion of a trapped
atomic ensemble. For a high-energy polarized spin, this
interaction results in a negative-mass instability, with
dynamics analogous to a self-driven parametric amplifier.
We observed coherent amplification of a correlated mode
by the instability, using time-resolved matched-filter analy-
sis to estimate the covariance of the two-mode correlated
state. This instability could be applied as a coherent
amplifier of an optomechanical state, facilitating enhanced
measurement sensitivity, or to generate two-mode squeezed
states, for use in entanglement enhanced metrology. While,
in our present system, any potential squeezing is obscured
by incoherent coupling to thermal motion, this limitation
could be avoided by using separate spin and mechanical
oscillators, coupled only by cavity optodynamics.
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