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In the presence of P, T-violating interactions, the exchange of axionlike particles between electrons and
nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We
perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-
Dirac method including electron core polarization corrections. We present analytical estimates to explain
the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the
experimental bounds on the EDMs of atoms and molecules, including '33Cs, 20°Tl, '2°Xe, '°Hg, "'Yb!°F,
I80Hf19F+, and 2%2Th'°0, we constrain the P, T-violating scalar-pseudoscalar nucleon-electron and
electron-electron interactions mediated by a generic axionlike particle of arbitrary mass. Our limits
improve on existing laboratory bounds from other experiments by many orders of magnitude for
m, = 1072 eV. We also place constraints on CP violation in certain types of relaxion models.
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Introduction.—The Standard Model (SM) of particle
physics has to date provided a very successful framework
for describing and explaining most of the observed physical
processes and phenomena in nature. However, despite its
success, the SM does not explain several important
observed phenomena, including dark matter and the
observed matter-antimatter asymmetry in our Universe.
This suggests the existence of new particles, which may
interact feebly with the known particles of the SM, as well
as additional sources of CP violation beyond the SM.

The axion, an odd-parity spin-0 particle that was
originally proposed to resolve the strong CP problem of
quantum chromodynamics (QCD) [1-7] and later realized
to also be an excellent candidate for dark matter [8—10], is a
prominent example of such a particle [11].

One may write the couplings of the QCD axion a with
the SM fermions y in the following form:

Lin = a)y ¥ (gy +idhrsw. (1)
W

In the absence of CP violation in the QCD sector (i.e.,
when the QCD vacuum angle 6 in the Lagrangian £, =
0GG/32x* attains its minimum at O = 0), the cou-
plings of the axion with fermions are CP conserving:
gy = 0. However, when 0.5 # 0, the axion acquires non-
zero CP-violating couplings with the light quarks:
g; = 921 = gé = (aeffmumd>/[(mu + md)fa}’ where fa is
the axion decay constant [13], and the subscripts u, d, and s
refer to the up, down, and strange quark flavors, respec-
tively. In this case, electric dipole moment (EDM) experi-
ments with ultracold neutrons [14,15] and atomic mercury
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[16], which constrain the effective QCD vacuum angle to
be |0 < 10719, place the following bounds on the
combination of parameters gflg.,’j (here w denotes either a
light quark or the electron, with g, = m,,/f,):

mq|6eff|ﬂ |g;g$‘ < 10_10mqm1// (2)
fa  fa mg "~ ’

Noen
where we have made use of the relation m,f, NAéCD
for the QCD axion, with Agcp ~250 MeV being the
QCD scale.

Apart from the QCD axion, one may also consider
generic axionlike particles, for which the contributions to
gy, are unrelated to the QCD sector, and so to which the
bounds in Eq. (2) do not apply. Indeed, the majority of
searches for the CP-violating couplings in Eq. (1) via the P,
T-violating interactions which they mediate make no
specific assumption about the underlying source of CP
violation [13,17-42].

In the present Letter, we investigate the manifestation of
the exchange of generic axionlike particles of arbitrary
mass between electrons and nucleons in atoms and mol-
ecules, in the presence of the couplings in Eq. (1). The P,
T-violating potential due to the exchange of an axion of
mass m, between two fermions reads

9590 ~

e,
s, 3)
where r is the distance between the two fermions, and the y
matrices correspond to fermion 1. We restrict our attention
to the case when fermion 1 is the electron, but fermion 2
can be either the electron or nucleons. We also introduce

Vio(r) =+
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TABLE L.

masses. The presented values for the atomic EDMs are in terms of the parameter Cgp d

Summary of relativistic Hartree-Fock-Dirac calculations of the atomic EDMs induced by interaction (3) for various axion

2~ 297 g5/Gpm? and in the units e - cm. For

the electron-nucleon interaction, the values are normalized to a single nucleon, whlle for the electron-electron interaction, the values

include the effects of all atomic electrons. For molecular YbF in the 2%, /2 state, we calculate D =

(s1/21d;]51/2) = D(sy,) for the Yb*

ion. For molecular HfF™ and ThO in the *A, excited metastable state, we calculate D = —D(s; ;) + 2 D(ds,) for the Hf*" and Th*

ions, respectively.

Cs Tl Yb* Hf3* Tht

me @V) g ek acl) aycly aycsd ek p/cyy D/ p/cyy p/cg’ p/cgy)

S +7.7 %107 444 %1070 —7.1x 10718 —20x 107" +2.0x 107" 479 x 1070 —23 x 1071 —8.8x 1070 —58x 10777 —1.4x 1078
108 +74%x 1070 444 %1020 —67x10718 —2.0x 107" +1.8x 107 +8.0x10720 —22x 10718 —89x 1072 —54x10""7 —1.5x 10718
107 +53x 10717 444 x 1070 —35x10718 —2.0x 107" +1.1x10718 +£79x 1072 —13x 10718 —88x 1072 —25x 1077 —1.4x 10718
109 +1.9x1071 429 x 1072 —59x 107" —51x 1072 4+2.6x 107" 4+3.6x 1072 —29x 107" —38x 10720 —3.1x107'® —2.8x 1071
10° F41x 1072 —74x1072" —43x1072" 423 %1072 432x1072" —13x102 —34x1072 +13x102 —23x102 +13x107"
10* —65%x 107 —91x1072 +1.1x108 +15x1072 —69x10#* —95x1072 +77x 1072 +1.0x 1072 +64x 1073 +1.0x 10720
103 —63x107 -34x1073 +63x107 +47x 1073 —57x107% —40x 1072 4+4.6x 1072 432x 1072 +32x107* +2.8 x 1072
102 —83x 1077 —44x105 4+6.6x 1077 +49x 1075 —6.7x 1077 —47x105 +51x 1077 +35x 1072 +39x 10720 +3.4x1072*
10 —83x107% —44x107% +6.6x 107 449x 10727 —6.8x 107 —4.8x 10727 45.1 x 1072 4+3.5x 1072 +3.9x 10738 +3.4 x 10720

the shorthand notation gy, = (Ng;, + Zg),)/A, where N is
the neutron number, Z is the proton number, and A =
Z + N is the nucleon number.

The P, T-violating potential in Eq. (3) induces EDMs in
atoms and molecules by mixing atomic states of opposite
parity. We perform calculations of such axion-exchange-
induced atomic EDMs using the relativistic Hartree-
Fock-Dirac method, including electron core polarization
(RPA) corrections. We summarize our results in Tables I and
II. Detailed analytical calculations explaining the depend-
ence of these induced atomic EDMs on the axion mass and
atomic parameters are presented in the Supplemental
Material [43].

Calculations.—Paramagnetic atoms: We perform calcu-
lations of axion-exchange-induced EDMs of paramagnetic
atoms using the relativistic Hartree-Fock-Dirac method
including electron core polarization (RPA) corrections.

TABLE I

s P

For the atomic EDM of TI, electron correlation corrections
are known to play an important role (see, e.g., Ref. [45]).
Therefore, for Tl, we employ the CI+ MBPT method
described in Ref. [45] to perform the EDM calculations in
the present work. Correlations between the core electrons and
three valence electrons in Tl (ground state 6526 p, /2) have
been taken into account using the many-body perturbation
theory (MBPT) method including the screening of the valence
electron interactions by the core electrons. The Hamiltonian
matrix for the three valence electrons has been diagonalized
using the configuration interaction (CI) approach.

Paramagnetic molecules: In molecular species, the
heavy atom is in the internal electric field of a molecule,
E,,, and so the corresponding energy shift may be
estimated by Aex —-D-E;,, where D is the induced
EDM of the heavy atomic species. The molecular electric
field cancels out in the ratio

Summary of derived limits on the combinations of parameters g, gt X,/m2 and g gt /m? for m, > 300 keV, and g}, g% and

gige form, < 1 keV, from the consideration of tree-level axion-mediated P, T-violating interactions between electrons and nucleons in

atoms and molecules, and on the combination of parameters gg? In
induced electron EDM. The parameter X, is defined by X,

~ 1 when m R, > 1, and by X, ~

n(m,/m,)/m?2 for m, > m,, from the consideration of the loop-
(maRnucl) 2 when maRnucl < 1’

where R, is the radius of the atomic nucleus and y = /(j + 1/2)? —

(Za)?; see the Supplemental Material for more details [43]. We

have also summarized the numerical calculations (see also Table I) and experimental EDM bounds used in deriving these limits. The
P,T-odd parameters W, and W, are the normalized expectation values of the contact nucleon-electron scalar-pseudoscalar interaction

operator Hgp = —i(GrCsp/v/2)y756@)(r), and of the electron EDM interaction operator H, =
). The best limits are highlighted in bold.

W. = (Y|Hgp|?)/(CspQ), Wy = (P|H,|¥)/(d.2

—d,y°X -E, respectively:

Atom  d,/Csp(e-cm) d,/d. |d,| limit (e -cm)  |ghgl|X,/m2  |gygP |limit lgsgl|/m2 lg2gl | In(my/m,)/m%  |gsg? [limit
limit (GeV~2) limit (GeV~2) limit (GeV~?)

13¥3Cs 7.6 x 10719 [45] +124 [45] 1.3 x 1072 [46] 1.5x 10710 1.3 x 10716 3.4 x 1077 4.2 %1077 3.3 x 10710

2057 —7.0x 10718 [45] =582 [45,47,48] 9.4 x 10725 [49] 1.1 x 10712 1.2x 107" 8.1 x 107 6.3x107° 32x 107"

129%e  —5.0x 1072 [50] —-8x107*[50] 6.6 x 10727 [51] 1.1 x 107 - 1.4 x 1076 3.2 x 1075 e

9Hg  —5.9 x 1072 [50] —0.014 [50] 7.4 x 107 [16] 1.0x 1071 55x 10710 2.1x107°

Molecule W./W,(e - cm) [Eei|(GV/cm)  |d,| limit (e-cm) |ghgl|X, /m |g% g% [limit lgigl|/m2 lgsg¥ | In(my/m 2)/mg |g5 g% [limit
limit (GeV~2) limit (GeV~2) limit (GeV~

1Myp19F 3.4 x 1072 [52] 14.5 [52-56]  1.05x 10727 [56] 25x 1072 75x 10718 1.1 x1078 4.1 %107 1.8 x 10717

IBOHFI9F+ 3.7 x 1072! [57,58] 23 [59,60] 1.3 x 10728 [61] 20x 10712 13x10718 1.4 %107 5.1 x 10710 34x10718

22Th!%0 5.8 x 1072 [62] 84 [62-64] 8.7 x 1072° [65] 12x1083  19x107'8 12 %107 34x10°1° 5.0x 10718
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: 4)

where the subscripts refer to the axion masses at which the
relevant quantities are evaluated. Expression (4) allows us
to determine the energy shift for a finite axion mass in
molecules, by using calculated values for the induced EDM
of the heavy atomic species in Table I, as well as existing
values of the energy shift for an infinite axion mass in
molecules [52-55,57-60,62—-64]. This allows us to inter-
pret molecular experiments.

For molecular YbF, which is in the %%, )2 state, we
calculate D = (sy5|d,|s1/2) = D(s,) for the Yb™ ion,
where the atomic EDM is calculated for the maximal
projection of the electron angular momentum, j,. For
molecular HfF™ and ThO, the EDM is measured in the
3A; excited metastable state that corresponds to one s and
one d electron in the state |[L, = +2,5, = —1,J, = +1).
Expanding this state in terms of sy,,, d3/, and ds, atomic
orbitals, we obtain D = —D(s;/,) +3D(ds),). The ds),
atomic orbital does not contribute to the atomic EDM in
this case, since the dipole operator cannot mix it with a p3/,
atomic orbital (which has the opposite value of the electron
spin projection, s.).

For a high-mass axion (where the effect arises mainly
from the small distances r < ag/Z'/?), the dominant
contribution to the atomic EDM comes from the mixing
of the sy, state with p /, states, while for a low-mass axion
(where the effect arises mainly from the intermediate
distances r ~ ag/Z'/3), there is also a non-negligible
contribution from the mixing of the ds/, state with f5/,
states.

Diamagnetic atoms: In diamagnetic atoms with zero
electron angular momentum, an electron-spin-dependent
P,T-violating interaction induces an atomic EDM only in
combination with the hyperfine interaction [66].
Calculations in Ref. [66] have been performed for the
contact limit of interaction (3), and also for the interaction
of an electron EDM with atomic electric and magnetic
fields. Relativistic many-body calculations of the electron
EDM effects including RPA corrections have been per-
formed in Ref. [67]. There is an approximate analytical
relation between the matrix elements of the contact limit of
interaction (3) and the interaction of an electron EDM with
the atomic electric field [68]. Therefore, we may also use
the calculations of the electron EDM effects to predict the
effect of the contact limit of Eq. (3). In the present
Letter, we use the calculated values for d,/Cgp [defined
via the operator Hgp = —i(GrCsp/+/2)7%56) (r)] from
Refs. [66,67], which have been presented in the review
[50], together with the analytical formulas (9) and (12) in
the Supplemental Material [43], in order to extract the
limits presented in Table II.

Results and discussion.—Our results are summarized in
Tables I and II, and are shown in Fig. 2. We find that the
best limits on high-mass axions come from Hg and ThO,
while the best limits on low-mass axions come from HfF .
The reason why a relatively light system such as HfF " can
give strong constraints for low-mass axions (and not
necessarily for high-mass axions) can be traced to the
dependence of the induced atomic EDM on the atomic
parameters. When a high-mass axion is exchanged, the
induced atomic EDM has a strong Z dependence (scaling as
d, x AZ’K ., for the electron-nucleon interaction and d,,
Z? for the electron-electron interaction, where K, is a
relativistic factor), whereas when a low-mass axion is
exchanged, the induced atomic EDM has a milder Z
dependence (scaling only as d,, « A for the electron-nucleon
interaction and d,, & Z for the electron-electron interaction);
see the Supplemental Material for more details [43].

We also note that the atomic EDMs induced by
the exchange of high-mass and low-mass axions differ in
sign (see Table I). This can be traced to the fact that the
effects arise from different distances in these two limiting
cases. When a high-mass axion is exchanged, the dominant
contribution comes from the small distances r < ag/Z'/3,
whereas when a low-mass axion is exchanged, the dom-
inant contribution comes from the intermediate distances
r~ag/Z'3, where the wave functions oscillate; see the
Supplemental Material for more details [43].

Loop-induced electron EDM:The interactions in Eq. (1)
also induce an electron EDM via the one-loop process in
Fig. 1:

gigbem
d, ~ —Wln(ma/me) for m, > m,, (5)
a
gsgpe
d, ~— 8761'2:71 for m, < m,, (6)
e

where —e is the electric charge of the electron. Equation (5)
was presented in Ref. [17]. We see (referring to the
tabulated data in Tables I and II) that the one-loop-induced
electron EDM contribution (proportional to gig?) to the
atomic and molecular EDMs is smaller than the corre-
sponding direct tree-level contribution for small axion

masses, but can be larger for large axion masses. The

4 14

FIG. 1. One-loop-induced contribution to an electron electric
dipole moment. The large black circle denotes a pseudoscalar
interaction vertex, while the white circle denotes a scalar
interaction vertex, as defined in Eq. (1).
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FIG. 2. Limits on the P, T-violating scalar-pseudoscalar nu-
cleon-electron (top) and electron-electron (bottom) interactions
mediated by a generic axionlike particle of mass m,,, as defined in
Eq. (1). The regions in red correspond to regions of parameters
excluded by the present Letter from the consideration of atomic
and molecular electric dipole moment experiments. The regions
in grey correspond to existing constraints from torsion-pendulum
and co-magnetometry experiments [21,23,26,31,40-42]. The
region above the dashed black line in the top figure corresponds
to the limits for the QCD axion with 0| < 1070, In extrapo-
lating the limits on gig) from torsion-pendulum and co-
magnetometry experiments using the published limits on g},g%
in Refs. [21,23,26,31,40-42], we have assumed that A ~ 2.5Z for
the mean nuclear contents of the unpolarized test bodies.

reason for the latter is the strong Z dependence of the
electron EDM contribution in species with unpaired atomic
electrons (d, x Z3K,d,, where K, is a relativistic factor
[69]), compared with that of the direct tree-level contribu-
tion (d, x Z?g5g?), as well as an additional numerical
suppression factor for the direct tree-level contribution [see
Eq. (11) in the Supplemental Material [43]].
Conclusions.—To summarize, we have derived limits on
the P, T-violating scalar-pseudoscalar nucleon-electron
and electron-electron interactions mediated by a generic
axionlike particle of arbitrary mass from EDM experiments
with atoms and molecules (see Table II for a summary of

limits). Our derived limits improve on existing laboratory
bounds from other experiments by many orders of magni-
tude for m, = 1072 eV (see Fig. 2). We note that there are
more stringent indirect bounds from the combination of
stellar energy-loss arguments and laboratory searches for
spin-independent fifth forces for m, < 10 eV [32], though
these bounds may be evaded by certain chameleonic
mechanisms, whereby the processes of stellar “cooling”
due to axion emission become inhibited [70].

Our derived limits also directly constrain CP violation in
certain types of relaxion models [71-73], where a spin-0
relaxion field ¢ couples to the Higgs doublet H via the
super-renormalizable interaction L, = —gpH TH, which
induces scalar interactions of ¢ with the electron and
nucleons [74]: g5 = gm,/mj, and g} = gbmy/m3.,, where
my, is the Higgs boson mass, and the parameter b ~ 0.2-0.5
[75]. Our results constrain the combination of parameters
ggb via the relation

m? . o
|ggg|limit = (ﬁ}}?ml\/) |9295 + 9‘1‘\/9@ |limit' (7)

Finally, we mention that ongoing and future EDM
experiments with atoms and molecules (see, e.g.,
Ref. [76] for an overview) may improve on the level of
sensitivity demonstrated in the present work.
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