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An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of
multireference wave functions. The AC expression recovers dynamic correlation energy and assures a
balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase
approximation allows one to find the correlation energy only from reference one- and two-electron reduced
density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form
expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the
computation cost making the method one of the most efficient multireference approaches accounting for
dynamic electron correlation also for the strongly correlated systems.
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A long-standing challenge in quantum chemistry is
development of methods that are capable of describing
many-electron systems whose electronic structure is deter-
mined by different types of electron correlation. Dynamic
short-range electron correlation effects are responsible for
binding atoms in molecules; those acting on long ranges
contribute to molecular interactions dominating in van der
Waals complexes. It is known that single reference methods
are likely to fail if strong correlation effects are significant,
and a successful theoretical method must be based on a
multideterminantal (being a linear combination of at least
two Slater determinants) wave function. Nowadays, one of
the most widely used multireference approaches in chem-
istry are CASSCF (complete active space self-consistent
field) and its variants [1]. Recently, a DMRG (density
matrix renormalization group) method has gained a lot of
interest as an computationally attractive alternative [2]. In
general, multireference methods suffer from ambiguities in
choosing a set of active orbitals and high computational
scaling. Including dynamic correlation in an efficient
and a size-consistent manner remains another problem.
Truncated configuration interaction (CI) expansions break
size consistency and may lead to factorial scaling.
Perturbation methods are problematic too due to ambigu-
ities in choosing a zeroth-order Hamiltonian, difficulties
with preserving size-extensivity, and a possible erratic
behavior resulting from an intruder state problem.
We propose to account for dynamic electron correlation

by deriving a pertinent expression within the adiabatic
connection (AC) formalism. The AC formalism has first
appeared in the literature in the context of DFT (density
functional theory) [3] and, together with the random phase
approximation, has recently led to emergence of a new
family of orbital-dependent correlation functionals [4]. So
far, the AC formalism has not been considered for multi-
reference wave functions. In this Letter, we present a

general framework how the AC theory, together with the
extended random phase approximation, can be used to
obtain correlation energy for a broad family of multi-
reference models. The excellent performance of this novel
AC approach is illustrated on examples of molecules
entering a strong correlation regime.
Consider the following ansatz for a many-electron wave

function

jΨi ¼
Y
I

ψ̂†
I jvaci: ð1Þ

An operator ψ̂†
I creates an NI-electronic multideterminantal

state and it is defined as

ψ̂†
I ¼

X
Q∈I

DI
Qâ

†
q1 â

†
q2…â†qNI

; ð2Þ

where Q is a string of NI indices corresponding to one-
electron basis functions, i.e. Q ¼ q1q2…qNI

. The states
fψ Ig, called group functions, are assumed to be strongly
orthogonal. Consequently, a set of orthogonal spin orbitals
is partitioned into disjoint subspaces I; J;…; and a given
group function ψ I ¼ ψ̂†

I jvaci, is expanded in a subspace I.
Originally, such a form of a wave function was considered
by McWeeny to describe weakly interacting groups of
electrons [5], forming, for example, shells in atoms,
different functional groups in the same molecule, or groups
belonging to different interacting molecules [6]. Rosta et al.
recognized that the ansatz given by Eqs. (1)–(2) includes,
as special cases, not only a single determinantal (Hartree-
Fock) wave function (each group would be of a single-
electron type) and an antisymmetrized product of strongly
orthogonal geminals (APSG) but also CASSCF multi-
reference wave functions [7]. In fact, in this work we
consider the proposed form of a wave function in an even
broader sense; namely, it would stand for any wave
function defined in a restricted space of spin orbitals, so
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the formalism presented below would be applicable in
addition to the aforementioned models, also to DMRG and
MCSCF wave functions, or to variational wave function-
free models that involve only a two-electron reduced
density matrix, e.g., Ref. [8].
Throughout the Letter, operators and integrals are

represented in the natural spin orbitals corresponding to
the ansatz (1). Natural spin orbitals, denoted as fφpðxÞg,
form a basis for diagonalizing a one-electron reduced
density matrix γpq ¼ hΨjâ†qâpjΨi. The expectation value
of an electronic Hamiltonian for the assumed wave function
given in Eq. (1) can be written as

E ¼
X
I

hψ Ij
�XNI

i¼1

ĥðxiÞ þ
XNI

i<j

r−1ij

�
jψ Ii þ

X
I>J

EIJ
HX: ð3Þ

The second term in Eq. (3) collects group-pairwise
Coulomb (H) and exchange (X) electron interaction con-
tributions and, apparently, electron correlation among
different groups is missing. Correlation energy is intro-
duced as a difference between an exact ground state energy,
E0, of a given system and E given in Eq. (3), i.e.,

Ecorr ≡ E0 − E: ð4Þ
The optimal wave function (1), minimizing the energy
expression given in Eq. (3), is composed of group-wave
functions ψ I satisfying group eigenequations, namely,

ĤIψ I ¼ EIψ I: ð5Þ
A group Hamiltonian ĤI is given as

ĤI ¼
X
pq∈I

heffpqâ
†
pâq þ

1

2

X
pqrs∈I

â†r â
†
s âqâphrsjpqi; ð6Þ

where an effective one-electron Hamiltonian element,
heffpq, for a group I includes a contribution from the
Coulomb and exchange interaction with all other groups,
namely, ∀pq∈Iheffpq ¼ hpq þ hpjυ̂IHXjqi, where hpjυ̂IHXjqi ¼P

J≠I
P

r∈J nr½hprjqri − hprjrqi�. As it has been already
noted in Ref. [7], an optimal group function (1) is an
eigenfunction of the zeroth-order Hamiltonian

Ĥð0Þ ¼
X
I

ĤI: ð7Þ

To find the expression for the correlation energy in the
adiabatic connection framework, define an adiabatic con-
nection Hamiltonian as

Ĥα ¼ Ĥð0Þ þ αĤ0; ð8Þ
where Ĥ0 ¼ Ĥ − Ĥð0Þ. By varying the coupling strength
parameter α between 0 and 1, one smoothly switches
between a group-noncorrelated system (α ¼ 0) and a fully
interacting case (α ¼ 1). Let fΨα

νg be a complete set of
eigenfunctions of the adiabatic connection Hamiltonian

ĤαΨα
ν ¼ Eα

νΨα
ν : ð9Þ

For α ¼ 0 the intergroup correlation effects are absent and a
ground state eigenfunctionΨα

0 turns into a group functionΨ
given in Eq. (1), whereas the energy is given by a sum of
the group energies, i.e., Eα¼0

0 ¼ P
IEI. A derivation of the

adiabatic connection formula for the correlation energy
employs an exact relation between a two-electron reduced
density matrix Γα ¼ hΨα

0jΓ̂jΨα
0i, a one-electron reduced

density matrix γα ¼ hΨα
0jγ̂jΨα

0i, and transition one-electron
density matrices γα;0ν ¼ hΨα

0jγ̂jΨα
νi reading [9]

Γα
pqrs ¼ γαprγ

α
qs þ

X
ν≠0

γα;0νpr γα;ν0qs − γαqrδps: ð10Þ

The final adiabatic connection expression for the correla-
tion energy reads (cf. the Supplemental Material [10])

EAC
corr ¼

Z
1

0

Wαdα; ð11Þ

where

Wα ¼ 1

2

X0

pqrs

�X
ν≠0

γα;0νpr γα;ν0qs þ ðnp − 1Þnqδrqδps
�
hrsjpqi

ð12Þ
and a prime indicates that terms corresponding to spin
orbitals p, q, r, s, belonging to the same group, are
excluded from the summation. The expression for the
adiabatic connection integrand given in Eq. (12) has been
obtained by assuming that for each value of α, a one-
electron reduced density matrix γα is equal to γ, i.e.,

∀α∈½0;1� γαpq ¼ δpqnp: ð13Þ
A similar assumption has been exploited in the derivation of
the AC correlation energy expression for a reference wave
function in a form of just a single determinant [4,9]. Notice,
however, that (contrary to a single determinantal case) the
approximation assumed in Eq. (13) is well justified if a
multireference wave function is employed in the zeroth
order, as it is the case here. Namely, already at α ¼ 0, a one-
electron density matrix possesses a correct structure of an
occupation numbers vector, which should not change upon
varying α from 0 to 1. The reason for the latter is that the
adiabatic connection is mainly responsible for accounting
for the dynamic correlation, if a multireference wave
function is employed, which does not lead to significant
changes in the one-electron reduced density matrix [11].
The usefulness of the AC expression presented in

Eq. (12) relies upon the availability of a viable and general
formalism, providing dynamic properties, in particular, the
transition density matrices γα;0ν within the assumed refer-
ence model. The recently proposed extended random phase
approximation (ERPA) [12], based on Rowe’s equation of
motion [13], allows one to find the approximate transition
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density matrix elements for the adiabatic connection
Hamiltonian Ĥα given in Eq. (8). By following a derivation
of the ERPA equations shown in Ref. [12] with the fully
interacting Hamiltonian Ĥ replaced by its adiabatic con-
nection counterpart Ĥα, one is led to the following set of
α-ERPA equations
�
Aα Bα

Bα Aα

��
Xα

ν

Yα
ν

�
¼ ων

�
−N 0

0 N

��
Xα

ν

Yα
ν

�
: ð14Þ

The matrices Aα, Bα, N are given solely by the
α-dependent elements of the adiabatic connection
Hamiltonian and one- and two-electron reduced density
matrices (cf. the Supplemental Material for the explicit
forms of the matricesAα andBα). Solutions of the α-ERPA
equations come in pairs of positive and negative eigenval-
ues corresponding, respectively, to excitation and deexci-
tation energies [14]. The elements of the matrices Aα, Bα

are linear in terms of the coupling strength parameter α,
which can be written explicitly asAα ¼ Að0Þ þ αAð1Þ and
Bα ¼ Bð0Þ þ αBð1Þ, with the Að0Þ, Bð0Þ, Að1Þ, and Bð1Þ
matrices being α independent. The eigenvectors ðXα

ν ;Yα
νÞ

are directly related to transition density matrix elements in
the ERPA approximation, namely [15],

∀p>q ½γα;0ν�qp ¼ ðnq − npÞ½Yα
ν �pq; ð15Þ

∀q>p ½γα;0ν�qp ¼ ðnp − nqÞ½Xα
ν �qp: ð16Þ

Using Eqs. (15)–(16), the spin-summed AC integrand
shown in Eq. (12) takes the form

Wα ¼ 2
X0

p>q;r>s

fðnp − nqÞðnr − nsÞ

×
X
ν

ð½Yα
ν �pq − ½Xα

ν �pqÞð½Yα
ν �rs − ½Xα

ν �rsÞ

−
1

2
½npð1 − nqÞ þ nqð1 − npÞ�δprδqsghprjqsi: ð17Þ

Notice that only eigenvectors corresponding to positive
eigenvalues (excitation energies) enter the expression.
Equations (11) and (17) constitute a central achievement
of the paper. Theyprovide away toobtain electron correlation
for a broad class of multireference models, including
CASSCF, DMRG, or geminals-product [16] approaches.
The adiabatic connection correlation energy in Eq. (11),
which employs the formula given inEq. (17), is not exact, and
it relies upon two approximations.One is the invariance of the
one-electron density matrix along the AC path, cf. Eq. (13),
and another one concerns transition densitymatrices obtained
from the α-ERPA equations, Eqs. (14), (15), and (16).
Since the static electron correlation is assumed to be

taken into account by the multireference character of the
wave function, one expects the near-linear behavior of the
AC integrand. Consequently, Wα could be approximated
with the two lowest-order terms in the α expansion, i.e.,

Wα ¼ Wð0Þ þ αWð1Þ; ð18Þ
which results in the following expression for the correlation
energy

EAC0
corr ¼ Wð0Þ þ 1

2
Wð1Þ: ð19Þ

Notice that in a special case of a single reference wave
function, the correlation expression (19) reduces to the well
known MP2 form. For a general multireference wave
function, the zeroth- and first-order terms Wð0Þ;Wð1Þ can
be found by applying perturbation theory to the ERPA
eigenproblem. Another possible approximation for the AC
integrand proposed in this Letter, consists in the linear
interpolation between the full-correlation limit and the
correct no-intergroup-correlation limit for which Wð0Þ is
set to 0 that, i.e.,

Wα ¼ αWα¼1 ð20Þ
leading to

EAC1
corr ¼ 1

2
Wα¼1: ð21Þ

Consider now a particular form of the multireference
wave function, Eq. (1), when each group function describes
two electrons, ∀I NI ¼ 2. In addition, spins are singlet
coupled in each group, and each subset of orbitals I is of
dimension two (unoccupied orbitals will form a separate
group). This model has been known in the literature as a
generalized valence bond perfect pairing (GVB-PP) or
simply a GVB ansatz [17,18]. It accounts for intra-electron-
pair static correlation and qualitatively describes a chemical
bond dissociation well [19]. Interestingly, for the GVB
wave function, the interpolated AC formula EAC1

corr is
identical to the recently developed ERPA-GVB correlation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

H
2
O : R

OH1
=R

OH2
=7.0 [a.u.]

W
 [a

.u
.]

 W
 W(0) +  W(1)

 W =1

FIG. 1. Adiabatic connection integrand Wα [Eq. (12)], its first-
order approximation [Eq. (18)], and the α ¼ 1 interpolation
formula [Eq. (20)] for the H2O molecule with both OH bonds
dissociating. Results for the GVB reference wave function.
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energy expression [15,20,21]. The latter has been originally
proposed based on the reconstruction of the missing
intergeminal correlation part of the GVB two-electron
reduced density matrix. The GVB ansatz leads to obtaining
an explicit and surprisingly simple expression for the
correlation energy EAC0

corr in the interpolated formula (19).
Namely, a block-diagonal structure of the ERPA matrices
for α ¼ 0 results in the following expression for the zeroth-
order integrand

Wð0Þ ¼ 2
X0

p>q

npðnq − 1Þhppjqqi; ð22Þ

(where, as before, a prime indicates that terms correspond-
ing to indices p, q belonging to the same group are
excluded and it has been assumed that the orbitals are in
a descending order with respect to the occupation numbers,
i.e., np < nq if p > q) and the first-order term follows from
a perturbation theory applied to the ERPA problem (for
details cf. the Supplemental Material). We have inves-
tigated the AC integrand given in Eq. (17) corresponding to
the GVB reference wave function for a number of systems
of diversified electronic structures and found that its
dependence on α does not deviate significantly from a
linear behavior even when strongly correlated orbitals are
present. Figures 1–2 show the plots of the AC integrand for
two representative examples when two or seven orbital
pairs become degenerate. The results of the absolute and
relative values of energies collected in Table I (cf. also
Fig. 3) support the conclusion that the total energy values
obtained by employing the full AC formula (AC-GVB), its
first-order approximation (AC0-GVB), and the α ¼ 1
interpolating formula (AC1-GVB) perform equally well
at equilibrium geometries and when bonds are breaking.
Clearly, employing the formulas EAC0

corr or EAC1
corr allows

one to avoid performing numerical α integration. Usage of
the expression EAC0

corr provides further advantage in reducing

the computation cost, since there is no need to solve full
ERPA problem and only solutions of the separate ERPA
problems for each group function are required. For the
GVB model, the formal scaling of the computation cost of
the AC0 correction amounts to only M5 (M is the number
of basis set functions). To show generality and prove the
validity of the proposed adiabatic connection approach, we
have employed its AC1 variant, based on Eqs. (21), (17),
and (14), to obtain a correlation energy for a widely used
CASSCF model. Results, denoted as AC1-CASSCF and
presented in Fig. 3 and Table II for the symmetrically
dissociating water molecule and triple bond breaking in the
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FIG. 2. Linear H8 chain with equidistant hydrogen nuclei. The
same notation as in Fig. 1 has been used.

TABLE I. Energy values obtained in the cc-pVDZ basis set [22]
by exploiting formulas given in Eqs. (11), (19), and (21) for the
GVB reference wave function (AC-GVB, AC0-GVB, and AC1-
GVB methods, respectively). For F2, H2O, and H8 molecules, the
reference energy values have been obtained with the CCSDTQ
(data from Ref. [23]), FCI, and DMRG methods, respectively.
Atomic units are used. ΔE ¼ Ediss − Eeq.

Molecule Method Eeq Ediss ΔE

F2 Reference −199.104 −199.059 0.045
Req ¼ 2.80 GVB −198.825 −198.808 0.017
Rdiss ¼ 8.00 AC-GVB −199.071 −199.032 0.040

AC0-GVB −199.080 −199.036 0.044
AC1-GVB −199.072 −199.025 0.047

H2O Reference −76.242 −75.909 0.333
Req ¼ 1.81 GVB −76.090 −75.784 0.305
Rdiss ¼ 7.00 AC-GVB −76.227 −75.886 0.341

AC0-GVB −76.234 −75.888 0.346
AC1-GVB −76.227 −75.878 0.349

H8 Reference −4.495 −4.130 0.365
Req ¼ 1.83 GVB −4.380 −4.085 0.296
Rdiss ¼ 3.40 AC-GVB −4.462 −4.104 0.358

AC0-GVB −4.454 −4.103 0.351
AC1-GVB −4.467 −4.101 0.365
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FIG. 3. Symmetric dissociation (both OH bonds are equally
stretched) of the H2O molecule.
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nitrogen molecule, have been obtained by solving the
ERPA equations with the A and B matrices constructed
by employing CASSCF occupation numbers and orbitals
and an approximate two-electron reduced density matrix.
For testing purposes, the latter has been represented using
the Müller approximation [24] reading Γpqrs¼npnqδpqδrs−ffiffiffiffiffiffiffiffiffiffinpnq
p

δpsδqr. Notice that if the CASSCF wave function is
employed, natural orbitals are partitioned into disjoint
groups of inactive, active, and secondary orbitals, and
the prime in the expression for Wα¼1, given in Eq. (17),
indicates that intragroup terms are excluded. The accuracy
of the AC1-CASSCF approach for the presented molecules
rivals or exceeds that of the perturbation-theory-based
NEVPT2 [25] method.
In summary, a new approach towards including dynamic

correlation in a broad class of multireference models has
been established. It is based on the adiabatic connection
formalism, where the assumption was made that a one-
electron density matrix stays constant along the AC path,
Eq. (13), coupled with the extended random phase approxi-
mation equations, Eq. (14). The latter has been used to
obtain transition density matrices. Two extrapolation
schemes for the AC integrand have been considered:
AC0 and AC1, cf. Eqs. (19) and (21), respectively.
Computation of the proposed AC correlation energy
involves only one- and two-electron reduced density
matrices of the reference model. It is worthwhile emphasiz-
ing a general nature and simplicity of the proposed AC
scheme and its AC1 (or AC0) variants. Having defined a
model wave function, one finds the missing electron
correlation energy defined in Eq. (4) by: (i) constructing
the ERPA matrices from the pertinent one- and two-
electron reduced density matrices, (ii) solving the ERPA
equations given in Eq. (14), (iii) computing the integrand
from Eq. (17), and (iv) finding the correlation energy either
from the full adiabatic-connection formula [cf. Eq. (11)] or
from the AC1 extrapolation approach according to Eq. (21).
For the former approach, the steps (i)–(iii) have to be
conducted for a number of values of the coupling constant

α, whereas the AC1 requires calculations only at α ¼ 1.
Application of the proposed adiabatic-connection-based
AC1 approach within the generalized valence bond or
CASSCFmodels confirms that it stays stable and reliable in
both weak and strong correlation regimes, even when
multiple electron pairs dissociate.

This work has been supported by the National Science
Centre of Poland under Grant No. DEC-2012/07/E/
ST4/03023.

*pernalk@gmail.com
[1] B. Roos and P. Taylor, Chem. Phys. 48, 157 (1980).
[2] G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62,

465 (2011).
[3] D. Langreth and J. Perdew, Phys. Rev. B 15, 2884 (1977).
[4] H. Eshuis, J. Bates, and F. Furche, Theor. Chem. Acc. 131,

1084 (2012).
[5] R. McWeeny, Proc. R. Soc. A 253, 242 (1959).
[6] R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).
[7] E. Rosta and P. Surján, J. Chem. Phys. 116, 878 (2002).
[8] J. Fosso-Tande, T.-S. Nguyen, G. Gidofalvi, and A. E.

DePrince, J. Chem. Theory Comput. 12, 2260 (2016).
[9] A. D. McLachlan and M. A. Ball, Rev. Mod. Phys. 36, 844

(1964).
[10] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.120.013001 for deriva-
tion of the adiabatic connection formula, the explicit form of
the alpha-ERPA equations, and the linearized form of the
alpha-integrand for the GVB reference.

[11] E. Ramos-Cordoba, P. Salvador, and E. Matito, Phys. Chem.
Chem. Phys. 18, 24015 (2016).

[12] K.ChatterjeeandK.Pernal, J.Chem.Phys.137, 204109(2012).
[13] D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
[14] K. Pernal, K. Chatterjee, and P. H. Kowalski, J. Chem. Phys.

140, 014101 (2014).
[15] K. Pernal, J. Chem. Theory Comput. 10, 4332 (2014).
[16] P. A. Limacher, P. W. Ayers, P. A. Johnson, S. De

Baerdemacker, D. Van Neck, and P. Bultinck, J. Chem.
Theory Comput. 9, 1394 (2013).

[17] W. J. Hunt, P. J. Hay, and W. A. Goddard III, J. Chem. Phys.
57, 738 (1972).

[18] J. Thom H. Dunning, L. T. Xu, T. Y. Takeshita, and B. A.
Lindquist, J. Phys. Chem. A 120, 1763 (2016).

[19] P. Surján, A. Szabados, P. Jeszenszki, and T. Zoboki,
J. Math. Chem. 50, 534 (2012).

[20] K. Chatterjee, E. Pastorczak, K. Jawulski, and K. Pernal,
J. Chem. Phys. 144, 244111 (2016).

[21] K. Pernal, Phys. Chem. Chem. Phys. 18, 21111 (2016).
[22] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
[23] M.Musial andR. J.Bartlett, J.Chem.Phys.135, 044121(2011).
[24] A. M. K. Müller, Phys. Rev. A 105, 446 (1984).
[25] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and

J.-P. Malrieu, J. Chem. Phys. 114, 10252 (2001).
[26] G. K.-L. Chan, M. Kállay, and J. Gauss, J. Chem. Phys. 121,

6110 (2004).
[27] K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L.

Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle
et al., Comput. Mol. Sci. 4, 269 (2014).

TABLE II. Energy values in [a.u.] obtained in the cc-pVDZ
basis set [22] for the CAS (8,8) and CAS (6,6) reference wave
functions, for H2O and N2 molecules, respectively.

Molecule Method E1 E2 E3

H2O Referencea −76.242 −75.944 −75.909
R1 ¼ 1.81 CASSCFb −76.147 −75.850 −75.816
R2 ¼ 3.78 NEVPT2b −76.228 −75.934 −75.898
R3 ¼ 7.00 AC1-CASSCF −76.232 −75.961 −75.897
N2 Referencec −109.278 −109.086 −108.967
R1 ¼ 2.12 CASSCFb −109.091 −108.889 −108.780
R2 ¼ 3.00 NEVPT2b −109.248 −109.056 −108.936
R3 ¼ 4.20 AC1-CASSCF −109.261 −109.074 −108.966
aFCI data from Ref. [26].
b
DALTON package [27] calculation.
cFCI results obtained using DALTON package [27].

PHYSICAL REVIEW LETTERS 120, 013001 (2018)

013001-5

https://doi.org/10.1016/0301-0104(80)80045-0
https://doi.org/10.1146/annurev-physchem-032210-103338
https://doi.org/10.1146/annurev-physchem-032210-103338
https://doi.org/10.1103/PhysRevB.15.2884
https://doi.org/10.1007/s00214-011-1084-8
https://doi.org/10.1007/s00214-011-1084-8
https://doi.org/10.1098/rspa.1959.0191
https://doi.org/10.1103/RevModPhys.32.335
https://doi.org/10.1063/1.1427918
https://doi.org/10.1021/acs.jctc.6b00190
https://doi.org/10.1103/RevModPhys.36.844
https://doi.org/10.1103/RevModPhys.36.844
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.013001
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.013001
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.013001
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.013001
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.013001
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.013001
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.013001
https://doi.org/10.1039/C6CP03072F
https://doi.org/10.1039/C6CP03072F
https://doi.org/10.1063/1.4766934
https://doi.org/10.1103/RevModPhys.40.153
https://doi.org/10.1063/1.4855275
https://doi.org/10.1063/1.4855275
https://doi.org/10.1021/ct500478t
https://doi.org/10.1021/ct300902c
https://doi.org/10.1021/ct300902c
https://doi.org/10.1063/1.1678308
https://doi.org/10.1063/1.1678308
https://doi.org/10.1021/acs.jpca.5b12335
https://doi.org/10.1007/s10910-011-9849-9
https://doi.org/10.1063/1.4954694
https://doi.org/10.1039/C6CP00524A
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.3615500
https://doi.org/10.1063/1.1361246
https://doi.org/10.1063/1.1783212
https://doi.org/10.1063/1.1783212
https://doi.org/10.1002/wcms.1172

