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We study the polarization of particles in relativistic heavy-ion collisions at very high energy along the
beam direction within a relativistic hydrodynamic framework. We show that this component of the
polarization decreases much slower with center-of-mass energy compared to the transverse component,
even in the ideal longitudinal boost-invariant scenario with nonfluctuating initial state, and that it can be
measured by taking advantage of its quadrupole structure in the transverse momentum plane. In the ideal
longitudinal boost-invariant scenario, the polarization is proportional to the gradient of temperature at the
hadronization and its measurement can provide important information about the cooling rate of the quark-
gluon plasma around the critical temperature.
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Global polarization of hadrons produced in relativistic
heavy-ion collisions has been recently observed by the
STAR experiment over a center-of-mass energy range
between 7.7 and 200 GeV [1,2]. This finding confirms
early proposals [3,4], later predictions based on local
thermodynamic equilibrium of spin degrees of freedom
[5,6], which provides a relation between polarization and
relativistic vorticity, and it agrees quantitatively with the
hydrodynamic model calculations [7–9] to a very good
degree of accuracy. In the hydrodynamic framework, the
distinctive feature of polarization is its proportionality to
the gradients of the combined temperature and velocity
fields [see Eq. (5)], so that its measurement is a stringent
test of the hydrodynamic picture which is distinct and
complementary to momentum spectra.
The experimental efforts, thus far, focused on the search

of the average global polarization of Λ hyperons along the
direction of the angular momentum of the plasma. This
measurement requires the identification of the reaction plane
in peripheral collision as well as its orientation, that is
the direction of the total angular momentum vector J.
The average global polarization along J is also found to
decrease rapidly as a function of center-of-mass energy [1],
from few percent at

ffiffiffiffiffiffiffiffi
sNN

p ¼ Oð10Þ GeV to few permille
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ Oð100Þ GeV, in agreement with calculations
based on the hydrodynamic model [8–10] as well with
hybrid approaches [11,12]. In the TeV energy range, at the
LHC, the global polarization along J is not seen [13], as it is
most likely beyond experimental sensitivity.
It is of course desirable to check more—possibly

distinctive—predictions of the hydrodynamic model
besides the global polarization along J. For instance, in
Ref. [14], a connection between local vortical structures in
event-by-event hydrodynamics and correlation of polar-
izations of two Λ hyperons in transverse and longitudinal

(along the beam line) directions has been studied. In this
Letter, we argue that in noncentral heavy-ion collisions, a
nonzero longitudinal polarization of Λ with different trans-
verse momenta pT is a more generic effect present in a
simple nonfluctuating hydrodynamic picture, and propose
to measure it in experiment [15]. As it will be shown, this
observable has several attractive features: (i) unlike the
polarization along J, it is sensitive only to the transverse
expansion dynamics; (ii) it is found not to decrease rapidly
as a function of center-of-mass energy (similar to longi-
tudinal correlations in Ref. [14]) and it can be detected even
at the LHC energy in the TeV range; (iii) it survives the
“minimal vorticity” scenario of Bjorken longitudinal boost
invariance; (iv) unlike the polarization component along the
angular momentum, it does not require the identification of
the orientation (hereafter, we use the term “orientation” in
its mathematical sense, meaning discrete choice of orien-
tation of a normal vector to the plane) of the reaction plane,
thus greatly reducing the experimental labor. The effect is
dominated by the geometry of collision; therefore, we do
not include event-by-event fluctuations in this study.
Symmetries in relativistic nuclear collisions at very high

energy.—In principle, (average) collisions of two identical
nuclei at a finite impact parameter feature two initial discrete
symmetries: rotation by an angle π around the total angular
momentum axis and reflection in the transverse plane with
respect to the reaction plane (see Fig. 1). Their combination
implies an invariance by total reflection x → −x. In the high
energy limit, another (continuous) symmetry becomes
plausible and it is commonly assumed in the hydrodynamic
modeling of relativistic heavy-ion collisions, that is the
invariance byLorentz boost along the beamaxis, also known
as Bjorken longitudinal boost invariance. The straightfor-
ward consequence of the boost invariance is that any scalar
function of space-time coordinates is independent of the
space-time rapidity η ¼ ð1=2Þ log½ðtþ zÞ=ðt − zÞ�, where z
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is theCartesian coordinate along the beamdirection and t the
time in the center-of-mass frame. Also, by combining
reflection with boost invariance, one readily obtains that
the space-time rapidity component of any vector field V
vanishes; that is, Vη ¼ 0.
An orthogonal (i.e., scalar product conserving) sym-

metry transformation for a general tensor field (including
all special cases: scalar, vector, pseudovector, etc.) can be
expressed as

T(ΛðxÞ) ¼ DðΛÞTðxÞ; ð1Þ
where Λ is the linear symmetry transformation andDðΛÞ its
representation matrix for the tensor field T. Suppose that we
deal with a (tensor) function Θ of four-momentum which is
expressed as an integral over a domain Ω, symmetric under
the transformation Λ, of a tensor function of x and p:

ΘðpÞ ¼
Z
Ω
dΩTðx; pÞ; ð2Þ

with

T(ΛðxÞ;ΛðpÞ) ¼ DðΛÞTðx; pÞ: ð3Þ
Therefore,

Θ(ΛðpÞ) ¼
Z
Ω
dΩT(x;ΛðpÞ)

¼
Z
D
dΩDðΛÞ−1T(Λ−1ðxÞ; p) ¼ DðΛÞ−1

×
Z
Λ−1ðΩÞ

dΩ0Tðx0; pÞ

¼ DðΛÞ−1
Z
Ω
dΩTðx0; pÞ ¼ DðΛÞ−1Θ(ΛðpÞ);

ð4Þ

wherewe have used Eq. (3) and the invariance of the domain
Ω under the transformation Λ, implying dΩ0 ¼ dΩ and
ΛðΩÞ ¼ Ω. We are thus led to the conclusion that, when
dealing with observables in momentum space like Eq. (2)
with integrand fulfilling the condition Eq. (3), the spatial
symmetries have counterparts in momentum space, as
demonstrated by Eq. (4). For instance, this is the case for
the particle momentum spectrum of fermions which can be
written as an integral over the decoupling (or particlization)
3D hypersurface Σ:

Z
Σ
dΣλpλnF ¼

Z
Σ
dΣðn · pÞnF;

where n is the unit vector perpendicular to the hypersurface
Σ and nF is the relativistic Fermi-Dirac distribution:

nF ¼ 1

eβ·p−
P

j
μjqj=T þ 1

;

where β ¼ ð1=TÞu is the four-temperature vector. The
reason is that any integrand function involving the scalar
product of four-momentum and a symmetric vector field like
βðxÞ or nðxÞ fulfills Eq. (3). For instance,

β(ΛðxÞ) · ΛðpÞ ¼ Λ(βðxÞ) · ΛðpÞ ¼ βðxÞ · p:

For the specific case of relativistic heavy-ion collisions and
longitudinal boost invariance, this means that the spectrum
of final particles will be invariant under longitudinal boost in
momentum space, which is independent of the rapidity
Y ¼ ð1=2Þ log½ðEþ pzÞ=ðE − pzÞ�, and similarly for the
reflection and discrete rotation symmetries.
Polarization of emitted particles in high energy heavy-

ion collisions.—These symmetries have remarkable con-
sequences on the polarization of emitted particles, specifi-
cally on the single-particle mean spin vector SμðpÞ. At
the leading order, the mean spin vector is given by the
formula [5]

SμðpÞ ¼ −
1

8m
ϵμρστpτ

R
Σ dΣλpλϖρσnFð1 − nFÞR

Σ dΣλpλnF
; ð5Þ

where ϖ is the thermal vorticity, that is,

ϖμν ≡ 1

2
ð∂νβμ − ∂μβνÞ ð6Þ

and Σ is the decoupling hypersurface (see also
Refs. [16,17]). It is important to stress that in Eq. (5),
the Cartesian coordinates in the integrand are understood as
they are the only ones making sense of an integral of a
vector field. The SðpÞ is a pseudovector in momentum
space, so, unlike polar vectors, the component along the
beam line Sz (henceforth defined as longitudinal) at Y ¼ 0
can be nonvanishing and must feature a quadrupole pattern

FIG. 1. A sketch of peripheral relativistic heavy-ion collisions.
The system is symmetric for a rotation by 180° around the angular
momentum and reflection with respect to the reaction plane xz.
The axes x, y, z are the reference frame for this work.

PHYSICAL REVIEW LETTERS 120, 012302 (2018)

012302-2



in the transverse momentum plane like that shown in Fig. 2.
Particularly, the rotation-reflection symmetries imply that
Sz has a Fourier decomposition involving only the sine of
even multiples of the azimuthal angle φ:

SzðpT; Y ¼ 0Þ ¼ 1

2

X∞
k¼1

f2kðpTÞ sin 2kφ: ð7Þ

A nice feature of Eq. (7) is that the sign of Sz in the
transverse momentum plane does not depend on
the reaction plane orientation, for a fixed handedness of
the reference frame. The basically quadrupole pattern of the
longitudinal component of the spin vector had been
observed in numerical hydrodynamic calculations [8,18],
with a remarkable feature that Sz has an absolute magnitude
larger than those of the transverse components and we will
delve into this feature later on.
Longitudinal boost invariance has further consequences

for the spin vector in momentum space. Because of the
boost and reflection invariance, a vector field at z ¼ 0 must
have a vanishing Cartesian longitudinal component
Vz ¼ 0. Likewise, the Cartesian longitudinal component
of any vector field in momentum space must be vanishing
at midrapidity Y ¼ 0. This implies that the transverse
components of a pseudovector field in momentum space
must be vanishing; that is,

SxðpT; Y ¼ 0Þ ¼ SyðpT; Y ¼ 0Þ ¼ 0:

The current experimental evidence seems to bear out the
asymptotic longitudinal boost-invariance scenario insofar
as Sy, which is the component perpendicular to the reaction
plane, is found to steadily decrease as center-of-mass
energy increases. This has been observed by the experiment
STAR [1] and confirmed by a null result from ALICE [13]

at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV. These observations are in agreement
with numerical calculation of the polarization of Λ hyper-
ons carried out in Refs. [8,18] with hydrodynamic models
asymptotically fulfilling longitudinal boost invariance. In
fact, according to these calculations the longitudinal
component of the mean spin vector Sz turns out to be
sizably larger in magnitude than the transverse ones fromffiffiffiffiffiffiffiffi
sNN

p ≈ 60 GeV onwards and it is thus reasonable to
surmise that it will survive at the highest center-of-mass
energy in the TeV range.
Indeed, it can be shown that this component does not

vanish even in the exact boost-invariant scenario with no
initial state fluctuations and that it decreases slowly with
increasing center-of-mass energy. For the sake of simplic-
ity, let us demonstrate that with an explicit calculation by
assuming that the fluid is ideal, uncharged, and that the
initial transverse velocities ux, uy vanish. Accumulated
evidence in relativistic heavy-ion collisions indicates that
these are reasonable approximations at very high energy.
Under such assumptions, it is known that a particular
antisymmetric tensor, the T vorticity,

Ωμν ¼ ∂μðTuνÞ − ∂νðTuμÞ; ð8Þ

vanishes at all times [18,19], as a consequence of the
equations of motion. In this case, the thermal vorticity
reduces to [18]

ϖμν ¼
1

T
ðAμuν − AνuμÞ; ð9Þ

A being the four-acceleration field. This form of the thermal
vorticity shows its entirely relativistic nature, its spatial part
being proportional to ða × vÞ=c2 in the classical units. If we
now substitute Eq. (9) in Eq. (5), we get

FIG. 2. Map of longitudinal component of polarization of midrapidityΛ from a hydrodynamic calculation corresponding to 20%–50%
central Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV (left) and 20%–50% central Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2760 GeV (right).
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SμðpÞ ¼ −
1

4m
ϵμρστpτ

R
Σ dΣλpλAρβσnFð1 − nFÞR

Σ dΣλpλnF
; ð10Þ

which shows that SzðpÞ can get contributions from the
vector product of fields and momenta in the transverse
plane, where they are expected to significantly develop even
in the case of longitudinal boost invariance. The uncharged
perfect fluid equations of motion can be written as

Aρ ¼
1

T
∇ρT ¼ 1

T
ð∂ρT − uρu · ∂TÞ:

If we plug the above acceleration expression into Eq. (11),
only the first term with ∂ρT gives a finite contribution as the
second term vanishes owing to the presence of the βσuρ
factor and the Levi-Civita tensor. Furthermore, since

∂
∂pσ nF ¼ −βσnFð1 − nFÞ;

we can rewrite Eq. (10) as

SμðpÞ ¼ 1

4mT
ϵμρστpτ

R
Σ dΣλpλ ∂nF∂pσ ∂ρTR

Σ dΣλpλnF
: ð11Þ

We can now integrate by parts the numerator in the above
equation:

Z
Σ
dΣλpλ ∂nF

∂pσ ∂ρT ¼ ∂
∂pσ

Z
Σ
dΣλpλnF∂ρT −

Z
Σ
dΣσnF∂ρT:

Another very reasonable assumption is that the decoupling
hypersurface at high energy is described by the equation
T ¼ Tc, where Tc is the QCD pseudocritical temperature.
This entails that the normal vector to the hypersurface is the
gradient of temperature. Then the final expression of the
mean spin vector is

SμðpÞ ¼ 1

4mT
ϵμρστpτ

∂
∂pσ

R
Σ dΣλpλnF∂ρTR
Σ dΣλpλnF

: ð12Þ

The longitudinal component of the mean spin vector Sz

thus depends on the value of the temperature gradient on
the decoupling hypersurface and its measurement can
provide information thereupon. A simple solution of the
above integral appears under the assumption of isochronous
decoupling hypersurface, with the temperature field only
depending on the Bjorken time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
. In this case

the parameters describing the hypersurface are x, y, η with
τ ¼ const, and the only contribution to the numerator of
Eq. (12) arises from ρ ¼ 0:

Z
dΣλpλnF

dT
dτ

cosh η:

At Y ¼ 0, the factor cosh η can be approximated with 1
because of the exponential falloff exp½−ðmT=TÞ cosh η�
involved in nF; therefore,

SzðpT; Y ¼ 0Þk̂≃ −
dT=dτ
4mT

k̂
∂
∂φ log

Z
Σ
dΣλpλnF;

where φ is the transverse momentum azimuthal angle,
counting from the reaction plane. In the above equation the
longitudinal spin component is a function of the spectrum
alone at Y ¼ 0. By expanding it in Fourier series in φ and
retaining only the elliptic flow term, one obtains

SzðpT; Y ¼ 0Þ≃ −
dT=dτ
4mT

∂
∂φ 2v2ðpTÞ cos 2φ

¼ dT
dτ

1

mT
v2ðpTÞ sin 2φ; ð13Þ

meaning, comparing this result to Eq. (7), that in this case

f2ðpTÞ ¼ 2
dT
dτ

1

mT
v2ðpTÞ:

This simple formula only applies under special assump-
tions with regard to the hydrodynamic temperature evolu-
tion, but it clearly shows the salient features of the
longitudinal polarization at midrapidity as a function of
transverse momentum and how it can provide direct
information on the temperature gradient at hadronization.
It also shows, as has been mentioned, that it is driven by
physical quantities related to transverse expansion and that
it is independent of longitudinal expansion.
Polarization of Λ hyperons along the beam line.—The

above conclusion is confirmed by more realistic 3D viscous
hydrodynamic simulations of heavy-ion collisions using
the averaged initial state from the Monte Carlo Glauber
model with its parameters set as in Ref. [20]. We have
calculated the polarization vector P� ¼ 2S� of primary Λ
hyperons with Y ¼ 0 in their rest frame (note that at
midrapidity S�z ¼ Sz). The resulting transverse momentum
dependence of P�z is shown in Fig. 2 for 20%–50% central
Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 (RHIC) and 20%–50%
Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2760 GeV (LHC). The cor-
responding second harmonic coefficients f2 are displayed
in Fig. 3 for four different collision energies: 7.7, 19.6 GeV
(calculated with initial state from the UrQMD cascade
[21]), 200, and 2760 GeV (with the initial state from
Monte Carlo Glauber model [20]). It is worth noting that,
while the Py component, along the angular momentum,
decreases by about a factor of 10 between

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 and
200 GeV, f2 decreases by only 35%. We also find that the
mean, pT integrated value of f2 stays around 0.2% at all
collision energies, owing to two compensating effects:
decreasing pT differential f2ðpTÞ and increasing mean
pT with increasing collision energy. The Py component in
our calculations is produced in noncentral collisions only
due to anisotropic transverse expansion (elliptic flow),
whereas in central collisions the initial state fluctuations
dominate, as shown in Ref. [14]. The magnitude of the
resulting correlation function [which has a cosð2ΔϕÞ
shape] is similar to the one obtained in Ref. [14].
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In principle, the longitudinal polarization of Λ hyperons
can be measured in a similar fashion as for the component
perpendicular to the reaction plane, i.e., by studying the
distribution of p�z, which is the longitudinal component of
the momentum of the decay proton in the Λ rest frame,
according to the formula

dN
dΩ

¼ 1

4π
ð1þ αP� · p̂�Þ; ð14Þ

where α ¼ 0.642 is the known Λ weak decay constant. For
Λ at midrapidity, both the longitudinal polarization com-
ponent and the proton p�z are the same as in the quark-
gluon plasma (QGP) frame, so the longitudinal momentum
distribution of the decay proton is a direct probe of the
mean spin vector in the QGP frame; for the general case, a
boost must be performed, but the method is basically the
same. Hence, at Y ¼ 0, the average sign of the pz will
follow the pattern shown in Fig. 2 for Sz, as a function of
the azimuthal angle with respect to the reaction plane, with
a leading behavior sin 2φ. The probability Ps that the decay
proton has a sign s reads:

Ps ¼
1

2
þ sα

4
P�z;

so that the mean sign is just ðα=4ÞP�z.
In summary, we have shown that local thermodynamic

equilibrium of the spin degrees of freedom and the hydro-
dynamic model predict a global pattern of polarization
along the beam line in relativistic heavy-ion collisions at
very high energy even in a minimal scenario of longitudinal
boost invariance, ideal fluid, and no initial state fluctua-
tions. We have shown that the polarization component
along the beam line has a typical quadrupole structure of pT
dependence similar to elliptic flow, by virtue of which the
identification of the orientation of the reaction plane is not

necessary. Its measurement is a crucial test of the hydro-
dynamic model and of its initial conditions and can provide
important and unique information about the temperature
gradient at the decoupling stage, when the QGP hadronizes
around the critical temperature. Calculations in a realistic
implementation of the hydrodynamic model indicate that
its value is within the current reach of the experiments at
RHIC and LHC energies.
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