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Most nonequilibrium processes in thermodynamics are quantified only by inequalities; however, the
Jarzynski relation presents a remarkably simple and general equality relating nonequilibrium quantities
with the equilibrium free energy, and this equality holds in both the classical and quantum regimes. We
report a single-spin test and confirmation of the Jarzynski relation in the quantum regime using a single
ultracold 40Caþ ion trapped in a harmonic potential, based on a general information-theoretic equality for a
temporal evolution of the system sandwiched between two projective measurements. By considering both
initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the
nonequilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.
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Since the original proposals of the celebrated ideas of
Maxwell’s demon [1] and Szilárd’s engine [2], much effort
has been devoted to incorporating information into thermo-
dynamics by reconsidering the meaning of thermodynamic
entropic and energetic costs. So far, the field of information
thermodynamics has reformulated the restrictions of the
original thermodynamics, e.g., the second law of thermo-
dynamics, in light of the interplay between the amount of
information and its thermodynamic utility. Reconsideration
of the second law based on the notion of information and
further clarifications of the physical nature of information
are typically expected to reconcile any apparent contra-
dictions we might have regarding our understanding of the
laws of thermodynamics [3].
In addition to this, there has been a parallel line of

development because the conventional equilibrium thermo-
dynamics cannot reasonably treat most natural or engi-
neered processes that occur far from equilibrium. Namely,
the nonequilibrium processes in thermodynamics are usu-
ally described by inequalities (or equalities that only hold in
the linear regime, which means not far from equilibrium).
In contrast, the Jarzynski relation presents a simple and
general equality to calculate the free-energy difference
between two states from Boltzmann-weighted statistics
of the irreversible work done along the trajectories arbi-
trarily out of equilibrium [4]. As the only equality in

nonequilibrium thermodynamics, the Jarzynski relation can
also be understood from the fluctuation theorem [5] under
the assumption of microscopically reversible and thermo-
stated dynamics. The ensuing investigations [6–9] have
further confirmed that the Jarzynski equality promises to
correctly predict any behavior, adiabatic or arbitrarily fast,
in the presence of the Boltzmann statistics. A comprehen-
sive review of thermodynamic experiments, using single
molecules and colloidal particles, regarding the fluctuation
theorem can be found in [10].
Understanding the thermodynamic process at the quan-

tum level is currently a topic attracting much attention
[11–13]. Several attempts have been made to extend the
Jarzynski relation to quantum regime [14–20]. From the
quantum perspective, the origin of fluctuations is no longer
just thermal but also quantum, and most thermodynamic
quantities should be retraced. For example, the amount of
work itself is not an observable in quantum thermodynam-
ics, and its quantification therefore needs to be reconsidered
[17,18,21,22]. Besides this, the quantum entropy is actually
an indication of the entanglement between the system and
its environment [23], and is no longer simply the thermo-
dynamic arrow of time.
Here we show a single-spin verification of an

information-theoretic equality relevant to Jarzynski relation
via experimental manipulation of a trapped-ion system.
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Ultracold trapped ions represent an ideal tool to investigate
the thermodynamics [20,21,24–26]. In comparison with a
previous attempt [20] using both the spin and vibrational
degrees of freedom of a trapped ion to explore the Jarzynski
equality, our execution on only a qubit (i.e., a single spin)
encoded in a single ultracold 40Caþ ion provides a more
fundamental test of the information-theoretic equality (not
just the Jarzynski equality itself) in a closedquantumsystem.
This makes sure that our experimental verification of the
Jarzynski-relevantequality ismadeunderan ideal fluctuation
theorem in the absence of decoherence. Consequently, our
manipulation could demonstrate, in a perfectly quantum
mechanical way, the interplay between nonequilibrium
phenomena and information at the nanoscale [27].
Our work is mainly based on a previous proposal [28] of

a general quantum mechanical process involving a tempo-
ral evolution sandwiched by two projective measurements.
Since the measurement updates the original state to a new
state with information encoded [3], this is a typical process
of thermodynamics of information. In general, the updated
state, after the measurement, is out of equilibrium even if
the system is initially prepared in an equilibrium state. So
the process of interest definitely reflects nonequilibrium
thermodynamics.
We first review briefly the main points in [28]. The

scheme gets started from a quantum state ρ, followed by a
measurement on the basis fPg. Then the ensuing evolution
is governed by the most general completely positive trace
preserving (CPTP) map,

P
iΛið·ÞΛ†

i , followed by another
measurement on the basis fQg. Such a process, under the
Born rule, can be described by the joint probability

pnm ¼ trfQm

X

i

ΛiðPnρPnÞΛ†
i Qmg ¼ pmjnpn; ð1Þ

where pn ¼ trfPnρg is the probability regarding the mea-
surement fPg, and pmjn ¼ trfQm

P
iðΛiPnΛ

†
i Þg is the

conditional probability implying the result of the second
measurement dependent on the first measurement outcome.
These quantities are associated with the mutual information

Inm ¼ − ln qm þ lnpmjn; ð2Þ
which witnesses the difference between the entropy of the
mth outcome without the knowledge of n (given by − ln qm
with qm ¼ trfQm

P
iΛiρΛ†

i g) and the mth outcome when n
is known (given by − lnpmjn). Based on the mutual
information Inm, an information-theoretic equality is pro-
posed, which satisfies the equality below,

he−Inmi ≔
X

nm

pnme−Inm ¼ 1: ð3Þ

The equation not only gives a simple expression of the
probability conservation, but also represents a relation to
the Jarzynski equality [4], if the system is initially prepared
as a Gibbs state. The relation is stated as

Inm ¼ −βðW − ΔFÞ; ð4Þ
whereW represents the work the system performs between
the initial and final states with the free energy difference
ΔF. The free energy is defined as F ¼ − lnZ=β with the
partition function Z ¼ P

ne
−βEn , where β ¼ 1=kBT is the

temperature parameter with the Boltzmann constant kB and
the temperature T, and En is the eigenenergy under the
measurement.
Before presenting our experimental observations, we

introduce briefly our system involving a single 40Caþ ion
confined stably in a linear Paul trap [29], whose axial and
radial frequencies are ωz=2π ¼ 1.01 MHz and ωr=2π ¼
1.2 MHz, respectively. Under the magnetic field of 6 G, we
encode the qubit in j42S1=2; mJ ¼ þ1=2i as j↓i and in
j32D5=2; mJ ¼ þ3=2i as j↑i, where mJ is the magnetic
quantum number. Although our investigation below only
focuses on this qubit, cooling the ion to be ultracold is still
necessary because thermal phonons yield offsets of Rabi
oscillation. As such, the Doppler cooling and the resolved
sideband cooling are executed in order, which leads to the
z-axis motional mode to be cooled down to the vibrational
ground state with the final average phonon number
n̄z < 0.1.

TABLE I. Values for the measurement pulses implementing P�
and Q� in the first part of the experiment with pure states, where
P ¼ σz and Q ¼ σy.

Pþ P− Qþ Q−

θ2 0 π π=2 π=2
ϕ2 0 0 0 π

FIG. 1. (I) The first measurement: Measurement Pn on the state
ρ to obtain pn. (II) The second measurement: Measurement pulse
under the operator UC yielding ~ρ ¼ UCρU

†
C, along with a

measurement Qm to obtain qm. (III) Process for conditional
probability: MeasurementQm on the state ρn [produced from (I)],
conditional on a previous measurement Pn, to obtain the condi-
tional probability pmjn.
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The qubit is initialized to j↓i with a probability of
99.3(2)%. With the 729-nm laser pulses, we realize the
carrier-transition Hamiltonian Hc ¼ Ωðσþeiϕ þ σ−e−iϕÞ=2
and the system evolves under the government of the carrier-
transition operator

UCðθ;ϕÞ ¼ cosðθ=2ÞI − i sinðθ=2Þðσx cosϕ − σy sinϕÞ;
ð5Þ

where θ ¼ Ωt is determined by the evolution time with the
laser-ion coupling strength Ω=2π ¼ 47.0ð5Þ kHz, and ϕ
represents the laser phase. Each experimental cycle is
synchronized with the 50-Hz ac power line and repeated
40 000 times. The 729-nm laser beam is controlled by a
double pass acousto-optic modulator. The frequency
sources for the acousto-optic modulator are based on a
direct digital synthesizer controlled by a field programable
gate array. Employment of the direct digital synthesizer
provides the phase and frequency control of the 729-nm
laser during each experimental operation.
In the first part of our scheme, we focus on pure states to

verify Eq. (3); the second part is to test the Jarzynski equality
related to Eq. (4) by exemplifying the thermal states as the
Gibbs states. Our operations in each part consist of four steps
[30]. For example, for the pure-state case, the steps include:
from j↓i to jξi, state preparation; from jξi to jζi, CPTPmap;
from jζi to jςi, state measurement; and finally a projection

measurement on j↑i. The first three steps are achieved,
respectively, by UCðθ0;ϕ0Þ, UCðθ1;ϕ1Þ, and UCðθ2;ϕ2Þ,
based onEq. (5). The projectors, in theBloch representation,
are generally described as P� ¼ ðI � p⃗ · σ⃗Þ=2 and Q� ¼
ðI � q⃗ · σ⃗Þ=2 with σ⃗ ¼ ðσx; σy; σzÞ.
For the case of pure states, we choose p⃗ ¼ ð0; 0; 1Þ and

q⃗ ¼ ð1; 0; 0Þ. We first produce a pure state ρ byUCðθ0;ϕ0Þ,
followed by a measurement P� ¼ ðI � σzÞ=2, an ensuing
evolution under UCðθ1;ϕ1Þ, and another measurement
Q� ¼ ðI � σyÞ=2. Since our measurements are performed
by detecting the population in the state j↑ih↑j, execution of
P� or Q� is accomplished by a measurement pulse under
the unitary operator UCðθ2;ϕ2Þ in addition to a projective
measurement. For example, the measurement pulse for P−
is performed by U†

Cðθ2;ϕ2Þj↑ih↑jUCðθ2;ϕ2Þ with θ2 ¼ π,
ϕ2 ¼ 0, as specified in Table I. To corroborate Eq. (3), we
need three measurement results pn, pm and pmjn, which are
obtained, respectively, by the three steps as shown in Fig. 1.
With the pure state ρ ¼ jψihψ j with jψi ¼ αj↓i − iβj↑i

and α2 þ β2 ¼ 1, we have accomplished experimental
measurements pn, pm, and pmjn by choosing three different
pure states with α ¼ 1,

ffiffiffiffiffiffiffiffi
2=3

p
, and

ffiffiffiffiffiffiffiffi
1=3

p
. Figure 2

demonstrates the results for α ¼ ffiffiffiffiffiffiffiffi
2=3

p
. In our case, since

the first measurement is made on the eigenstates of σz, the
results strongly depend on the initial state of the system and
remain unchanged with time. But the second measurement
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FIG. 2. Experimental results of the associated probabilities for pure states. In each panel, n1 ¼ 1, n2 ¼ 1, 2 and n1 ¼ 2, n2 ¼ 1, 2
denote the probabilities of P−, Pþ andQ−,Qþ, respectively, and n1 ¼ 3, n2 ¼ 1, 2, 3, 4 correspond to the conditional probabilities p−j−,
p−jþ, pþj−, pþjþ, respectively. The evolution time is set to (a) t ¼ τ, (b) t ¼ 2τ, (c) t ¼ 3τ, and (d) t ¼ 4τ, with τ ¼ π=5Ω. The initial
state is jψi ¼ ð ffiffiffi

6
p j↓i − i

ffiffiffi
3

p j↑iÞ=3, and we obtain the data with the rms error ≤ 0.02 for individual points, under measurement
repetition of 40 000 times.

TABLE II. Experimental values of the information-theoretic equality and the total mutual information using pure states, whereP
nmpnmInm is to check whether the summation of all the possible mutual information is positive, and he−Inmi should be close to unit.

The numbers in parentheses represent the standard errors of the mean, i.e., the rms error.

P
nmpnmInm he−Inmi

α t ¼ π=5Ω t ¼ 2π=5Ω t ¼ 3π=5Ω t ¼ 4π=5Ω t ¼ π=5Ω t ¼ 2π=5Ω t ¼ 3π=5Ω t ¼ 4π=5Ω

1 0.001(21) 0.002(6) 0.002(8) 0.001(16) 0.978(25) 0.978(8) 0.978(11) 0.973(20)ffiffiffiffiffiffiffiffi
2=3

p
0.937(54) 0.560(23) 0.508(19) 0.509(46) 0.985(39) 0.985(61) 1.015(63) 0.974(29)

ffiffiffiffiffiffiffiffi
1=3

p
0.520(36) 0.540(24) 0.553(25) 0.930(51) 0.993(59) 1.021(78) 1.023(55) 1.009(29)
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is different due to outcomes from the eigenstates of σy. As
such, the results of both Q� and the conditional probability
pmjn are time dependent. Based on the measurement results
as listed in Table II, we confirm Eq. (3) under root-mean-
square (rms) error ≤ 0.078, in which the error is induced
dominantly by quantum projection noise, relevant to
vacuum fluctuation, rather than the thermal noise arising
in conventional thermodynamics. This evidently indicates
that Eq. (3) is robust against vacuum fluctuation in quantum
thermodynamic processes. Besides, in terms of quantum
information theory, the correlation between the two suc-
cessive measurements makes sure that the individual
observations of Inm should be nonzero, i.e., possibly
negative or positive as we observed experimentally [30].
But the total mutual information should never be negative.
Our observation of the total mutual informationP

nmpnmInm, as listed in Table II, is indeed always positive,
which is fully in agreement with the theory. This also
provides a quantum mechanical verification of the fluc-
tuation theorem based on the probability distributions.
Considering a more general situation with the

mixed states, we initially prepare a thermal state in
the system, followed by a temporal evolution sandwi-
ched by two projective measurements. In this way, we
confirm a Jarzynski equality [28,31] relevant to the
mutual information Inm as tested above. To this end,
we may start from a thermal state ρi ¼ expð−βHiÞ=Zi
with the partition function Zi ¼ trfexpð−βHiÞg,
where Hi is the Hamiltonian of the system
after the projective measurement on fPg. Thus we
assume Hi ¼

P
�Ei

�P� with jEi
�j ¼ Ei. For another

projective measurement on fQg, we have the
Hamiltonian Hf ¼ P

�E
f
�Q� with jEf

�j ¼ Ef. In our
experiment, due to only two levels involved, we simply
have Ei ¼ Ef ¼ E. Thus, the work is defined as
W ¼ Ei

n − Ef
m, where Ei

n and Ef
m are the corres-

ponding eigenvalues regarding the measurements
fPg and fQg. The free energy difference
is ΔF ¼ Fi − Ff, where Fk ¼ − lnZk=β with

Zk ¼ trfexpð−βHkÞg. Thus we have pnm¼
trfQmUCPnρiPnU

†
CQmg¼trfQmPnρiPng¼trfQmPnρig¼

trfQmPnge−βEi
n=Zi, where we have used the fact that Qm

commutes with UC and Pn commutes with ρi. Based on
above processes, Eq. (4) works and Eq. (3) can be
rewritten as [28,31]

heβðW−ΔFÞi ¼ 1; ð6Þ

which is termed the Jarzynski equality to be verified
as below.
In our operations below, we choose p⃗ ¼ ð0; 0; 1Þ,

implying Hi ¼ Eσz, and we consider three different forms
of Hf with q⃗ ¼ ð1; 0; 0Þ, (0,1,0), and ð1=2; ffiffiffi

3
p

=2; 0Þ,
respectively, corresponding to Hf ¼ Eσx; Eσy, and

Eðσx þ
ffiffiffi
3

p
σyÞ=2. Then we obtain a two-level Gibbs state

ρi¼ expð−βEσzÞ=Zi¼½eβEj↓ih↓jþe−βEj↑ih↑j�=Zi, with
Zi ¼ e−βE þ eβE. In this case, we find that Zi ¼ Zf

implying ΔF ¼ 0.
By means of the qubit dephasing, we experimentally

prepare the Gibbs state, and then carry out operations [30]
following similar steps to the pure state case.
Accomplishment of the measurements regarding P� and
Q� also depends on the measurement operator
U†

Cðθ2;ϕ2Þj↑ih↑jUCðθ2;ϕ2Þ, where the values of θ2 and
ϕ2 are listed in Table III. By considering the initial states
regarding βE ¼ 0.2, 0.5 and 1.0, respectively, we have
carried out the above steps and confirmed Eq. (6) with high
precision; see Table IV where the rms errors are smaller
than 0.03. Different from the case of pure states, both
thermal and quantum projection noise exist in this case,
where the latter is dominant as analyzed in [30]. That the
rms error is smaller here than in the pure-state case is due to

TABLE III. Values for the measurement pulses implementing
P� and Q� in the second part of the experiment with Gibbs
states, where P� and Q� are defined in the text, and
O ¼ ðσx þ

ffiffiffi
3

p
σyÞ=2.

Qþ Q−

Pþ P− σx σy O σx σy O

θ2 0 π π=2 π=2 π=2 π=2 π=2 π=2
ϕ2 0 0 π=2 0 π=6 −π=2 π −5π=6

TABLE IV. Experimental results of the quantum Jarzynski equality and the total mutual information using
Gibbs states. Here Hi

f ¼ Eσx; Eσy and Eðσx þ
ffiffiffi
3

p
σyÞ=2 with i ¼ 1, 2, 3, respectively. We check whetherP

nmpnmðΔF −WÞ is positive in the summation of all the possibilities, and heW−ΔFi is close to unit. The numbers in
parentheses represent the standard errors of the mean.

P
nmpnmðΔF −WÞ heW−ΔFi

βE H1
f H2

f H3
f H1

f H2
f H3

f

0.2 0.046(3) 0.044(4) 0.048(3) 0.987(14) 0.998(17) 0.999(14)
0.5 0.234(8) 0.231(12) 0.240(8) 0.990(17) 1.002(20) 1.002(17)
1 0.766(13) 0.761(25) 0.779(15) 0.963(23) 0.977(26) 0.976(24)
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the fact that the measurements made in the latter case are
more complicated [30]. The observation values in Table IV
indicate that the Jarzynski equality holds under the influ-
ence of vacuum fluctuations and, on the other hand, that our
operations are precise enough to witness a single-spin
thermodynamic process governed by the Jarzynski
equality.
The experimentally determined errors are partly from

imperfection of initial-state preparation [0.7(2)%] and
final-state detection [0.22(8)%]. Decoherence effects are
negligible due to our short-time implementation: 50-μs
operation time for pure states and 3-ms operation time for
mixed states. The dominant errors, as mentioned above,
due to quantum projection noise are inevitable in any
quantum mechanical measurement, but can be reduced by
more measurements. As such, we have tried to repeat our
measurements by 40 000 times, suppressing the relevant
errors for individual points to be below 2%.
In summary, our experiment has provided the first single-

spin evidence confirming a simple and general equality
involving the expectation value of the exponential of
mutual information. Since the equality relies on the proper-
ties of classical probabilities (that arise from the projective
quantum measurements) and is concomitant with the
quantum Jarzynski equality, our experimental implemen-
tation at this fundamental level of a single spin will be
helpful for further understanding thermodynamic processes
in the quantum regime, particularly when quantum infor-
mation as well as more degrees of freedom are
involved [3,31].
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