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THEORETICAL LIQUID STRUCTURE FUNCTION FOR LIQUID He' AT T = 0k
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The Bijl-Feynrnan dispersion relation

g(K) = h'K'/2m S(K)

expresses the energy of an elementary excitation
;n a condensed boson system at T =0 in terms of
the liquid structure function S(K). For small
values of K the excitations are phonons governed
by the linear relation 8(K) = SKC (in which C is
the velocity of first sound). Consequently, in the
phonon region,

S(K) = AK/2mC. (2)

Equation (2) determines the slope of the liquid
structure function at the origin.

The experimentally measured S(K) for liquid
He' (experimental values extend down to K
= 0. 8 A ') may be extrapolated to the origin by a
fairly smooth curve. However, the slope at the
origin determined in this manner does not agree
with Eq. (2). This apparent discrepancy was
noticed sometime ago by Jackson' and indepen-
dently by Miller, Pines, and Nozieres. ' The lat-
ter authors developed the consequences of the
apparent discrepancy and pointed out that the ex-
per imental evidence is consistent with the occur-
rence of a shoulder on the S(K) curve in the neigh-
borhood of E =0. 6 A ' and indeed strongly sup-
ports the existence of such a shoulder.

The purpose of this Letter is to report a theo-
retical calculation of S(K) which exhibits the
shoulder at the predicted position. I start from
an assumed Lennard- Jones 6-12 type potential
for the interaction between two helium atoms and

attempt to determine the best possible Jastrow-
type trial function to describe the ground state.
The actual calculations begin with an assumed
form g(r, a), for the radial distribution function.
The free parameters e generate a family of pos-
sible radial distribution functions. For given n,
the expectation value of the kinetic energy is
computed by an iteration-variation algorithm
based on finding the maximum value of the Wu-
Feenberg functional ~.' The expectation value of
the potential energy is given immediately in terms
of g(r, n) Thus the e.xpectation value of the
Hamiltonian H is found as a function of n. The
minimum value of this function in the a space
then selects out a best radial distribution func-
tion from the g(r, o') family of functions. These
results will be reported in greater detail at the
conclusion of calculations now in progress.

The liquid structure function is computed from
the relation

S(K, a) =1+p fe [g(r, n)-I]dr

= 1+ J, xsinKr[g(r, a)-I]dr. (3)

Several families of trial functions, g(r, o.'},
have been studied. The functions S(K) generated
by the more successful of these all exhibit the
shoulder mentioned earlier. The common fea-
tures of the trial functions which put a shoulder
on the S(K) curve in the predicted neighborhood
are (1) the range over which g(r) is effectively
zero, (2) the rising slope of g(r), and (3) the mag-
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FIG. l. Radial distribution function g(y); solid 1.ine:
experimental data of Goldstein and Reekie as normalized
by Wu; dashed line: form& in text; dash-dot line: form
A in text.

FIG. 2. Liquid structure function S(K); solid line:
experimental data of Goldstein and Reekie as normal-
ized by Wu; dashed line: calculated from form g of
g(r); dash-dot line: calculated from form A of g(r);
arrow: small-& behavior of 8(&) given by Eq. (2).

nitude and width of the nearest neighbor peak.
These also are the features in which the trial
functions resemble closely the experimentally
determined g(r) [as the Fourier transform of the
observed S(K)]. Two of the functions used are
shown in Fig. 1 along with the experimental
curve of Goldstein and Reekie' as normalized by
%'u.

The theoretical forms are written

g(r) =g, (r)+ 6,(r),

subject to the normalization conditions

p f[g (r)-1~dr = -1,

f6g, (r)dr =0.

Form A is

g, (r) = (C+ 1)exp

d ~0
-c exp -(1+z )—

ls t'd) xo

~g, (r)=A
I

— exp -(1+x)l —
I

d~S lt'd) Zo

-& —
( exp -(1+q)l —

I«) (6)

with @=2. 6 A, z =4, A= 70, y =20, q =350 giving
the lowest energy found so far. The parameters
C and B are determined by the normalization con-
ditions of Eq. (6). Form B is

t'd~' t'd l ' (d
g.(r)=e~ -] -l 1+~) —

I +&I —
I

~ri Er)

6g, (r) =A exp -(1+z)~—
ky

x — 1-B — + C

with d=3. 34 A, a =0. 6, A =0. 2, B= 100, z =6.
As before, the remaining parameters b and C
are fixed by the normalization conditions.

The liquid structure functions resulting from
Egs. (6) and (7) are shown in Fig. 2 along with
the Goldstein and Reekie curve as normalized by
%u.' Since the asymptotic behavior of the trial
functions is essentially arbitrary, the computed
S(K) are not expected to have the correct slope
at the origin. For this reason the functions
S(K) are computed only down to K = 0. 2 A ' and
continued to the origin by the smooth interpola-
tion.

These results should help to direct attention to
the difficult experimental problem of measuring
S (K) down to K = 0. 4 A ' at T ~ 1'K.
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