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EXCITATION OF LONGITUDINAL PLASMA OSCILLATIONS
NEAR ELECTRON CYCLOTRON HARMONICS

S. J. Buchsbaum and A. Hasegawa
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received 22 May 1964}

We have studied microwave absorption in a
plasma column near the harmonics of the electron
cyclotron frequency and have found that it exhib-
its structure (the peaks a, 5, c, d, ~ ~ in Fig. 1)
which consists of many lines as a function of
static magnetic field. Similar, but less promi-
nent, lines were also reported in microwave
emission. ' The origin of this resonant structure
has not been understood heretofore. In this note
we present the observed properties of these res-
onances and develop the theory for them. We at-
tribute the resonances to excitation of longitudi-
nal plasma oscillations within narrow pass-bands
near each cyclotron harmonic. Such pass-bands
were discussed by Bernstein for propagation of
electrostatic oscillations across a static magnetic
field. We will show, however, that as in the case
of oscillations in the absence of a magnetic field
(the so-called Tonks-Dattner resonances'~') the
dispersion relation and the nature of the oscilla-
tions are profoundly modified by density gradi-
ents. We believe that such oscillations play an
important role in the many reported instances of
very large emission of microwave radiation near
cyclotron harmonics.

The nature of oscillations in the presence of a
magnetic field differs in the following essential
way from Tonks-Dattner resonances. The latter
ones can be excited only at frequencies larger
than the local plasma frequency. '" Consequently,
in a plasma column of finite radius, whose den-
sity decreases from the axis towards the walls,

the Tonks-Dattner oscillations are confined to a
narrow annular region near the wall of the tube,
where the plasma frequency is below the oscilla-
tion frequency. As shown most impressively by
Nickel, Parker, and Gould' and by others, ' the
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FEG. 1. Microwave absorption (in relative units)
in a plasma column as a function of magnetic field with
current I as a parameter. Pressure = O. 3 Torr. The
curves for different I's are displaced for display pur-
poses.

685



VOLUME 12, NUMBER 25 PHYSICAL REVIEW LETTERS 22 JUNE 1964

actual frequency spectrum depends strongly on

the nature of density gradients in and near the

sheath. In the presence of a magnetic field,
plasma oscillations can be excited at frequencies
lower than subharmonics of the electron cyclotron
frequency, ' provided the plasma frequency ex-
ceeds a certain critical value (which is a function
of magnetic field). These oscillations are thus

confined to a region near the axis of the plasma
column and are relatively insensitive to condi-

tions in the sheath. They are responsible for the
resonances shown in Fig. 1.

The absorption spectrum reproduced in Fig. 1

was obtained as follows. The positive column
(8 mm in diameter) of a hot-cathode arc dis-
charge in helium was inserted coaxially into a
cylindrical cavity oscillating in a TE,yg mode.
The resonant frequency of the empty cavity was
5000 Mc/sec. A static magnetic field uniform
over the volume of the plasma to better than 0. 5%
was applied parallel to the axis of plasma column,
and the microwave absorption by the plasma was
measured as a function of the magnetic field
(keeping the microwave frequency on cavity res-
onance) by monitoring the microwave power
transmitted through the cavity. The TEpyy mode
simulates very well the interaction of a cylindri-
cal extraordinary wave propagating radially in a
plasma column. ' The broad absorption back-
ground results from the cold-plasma resonance
at co'= ~@'+co~'; its shape is governed by radial
density gradients within the plasma column. e

Superimposed on this background absorption is
the resonant structure under discussion here.
The

peaked

is not part of the series of peaks
a, b, c, etc. It is thought to result from reso-
nant absorption of the extraordinary electromag-
netic wave itself, perhaps because of anharmonic
motion of electrons in the sheath. ' At constant
microwave and plasma frequencies, the series
of peaks a, h, c,d, ~ ~ ~ appears at fields higher
than 8 = me/en where n = 2, 3, 4, ~ . Their am-
plitude is largest for n= 2, but they are still
clearly discernible for n=3 and 4. As the plas-
ma frequency is increased, the lines crowd
closer. This experimentally observed behavior
is plotted in Fig. 2(a). We determined experi-
mentally that the position of the peaks a, 5, c,
d, ~ ~ ~ was insensitive to variation of the length
of the plasma column that was exposed to micro-
waves. This suggests that the peaks resulted
from excitation of radial rather then axial modes
within the plasma column.
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FIG. 2. (a) Position of peaks of a, b, c, of
Fig. 1 as a function of ~pp /(u . Thevalues of ~po
are deduced from the onsets of cold-plasma absorp-
tion in Fig. 1 due to resonance at ~ = (dc2+ +p .
(b) Calculated resonant frequencies of the odd (-) and
even (+) solutions in a plasma slab. The solid lines
are the solution of Eq. (6) and the dotted lines are
given by p+ 1 =g, yg

= 1, 2, ~ ~ ~ .

In order to account quantitatively for this reso-
nant structure we adopt the following model. The
cylindrical plasma column is replaced by a plas-
ma slab with its faces at x = +/. The density is
assumed to vary such that &up' = &up0'g(x) where
&op0' is the plasma frequency at x =0 and g(0) = l.
The dc magnetic field is along the z axis and the
oscillations propagate only along x, that is, in
the direction along which there is a density gra-
dient. This model proved sufficient to account
for most aspects of the Tonks-Dattner resonances
in the absence of a magnetic field. ' It has the
great virtue that for certain quite realistic g(&),
closed-form solutions will prove possible.

Unlike the case with no magnetic field it is not
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sufficient to use the first two moments of the
Boltzmann equation to describe the particle den-
sity and current. To bring out the resonant fea-
tures near cyclotron harmonics, the linearized
Boltzmann equation must be employed. This
equation may be formally integrated if the spatial
derivative d/dx is retained as an operator. '

If the width of the plasma slab, 2l, is much
larger than the I armor radius, the perturbed
distribution function may be expanded with (u/&uc)
x (d/dx) as the expansion parameter, where ~'
= eT/m with T the temperature. To study the ab-
sorption near ur = 2+c it is sufficient to take those
terms in the expansion which are linear in the
temperature T.' The use of the distribution
function in Poisson's equation yields

(d
p0

(d - (d
C

Note that X' and 8 are positive when roc &~ & 2~c.
Equation (1) has the form of a Schrodinger wave
equation with g and g(x) ' being regarded as ki-
netic and potential energy, respectively. For a
uniform density, g(x) = 1, the solutions are sinus-
oids, with eigenvalues such that (8-1)= A2(nv/2l)',
or

(4~ '-~')(~ '-~ '-~')-I ~ 'I —
I =0, (2)

(3eT, 'nm&'

c c p (m p (2f&

with n = 1, 2, Equation (2) is nearly, but not
quite, sufficient to account for the experimental
results. It fails mainly in that it predicts too
small a spacing between the resonant lines in-
creasing as n while the experimentally observed
lines are nearly uniformly spaced.

As in the Tonks-Dattner case, this discrepancy
is resolved by taking account of density variation
along x. We take 1/g(x) = I+y(x/I)' as a good ap-
proximation for the actual density variation in the
plasma. Then Eq. (1) is immediately soluble in
terms of the parabolic cylinder function" as

y =c [D (x/c)+D (-x/c)j,
V V

(3)

1 1g- y=0dx' X' g(x)

where y =g(x)dp/dx, y is electrostatic potential,
and

(~2 ~ 2)(4~ 2 ~2)

(3e T/m )(u
p0

where
3(u '(e T/m )I' "4

p0
4y((d —(d )(4(d - &d )

C C

(4K 2 &2)l2
1 c

3y+ '(eT/m)((u' -~ '
p0 C

1/2

X((d +(d -(d ) -1
c p0

(5)

Yhe function D„(x/c) has v+ I zeros. It vanishes
exponentially for large x/c, that is, it exhibits a
wave-like behavior near x =0 [actually where
8-I-y(x/I)' & 0], and a "tunneling"-like behavior
of a particle trapped in a parabolic potential well
for large x/c, that is, for x near l.

The eigenvalues A. are obtained by applying the
boundary condition that y~ vanishes at x = +l,

D (I/c) +D (-l/c)=0. (6)

Equation (6) is solved for ~c/&u as a function of
&up0'/&u' and shown in Fig. 2(b) (as solid curves)
for T =10 eV, I =2. 5 mm, and y=0. 25. As [D~(x)
+D~(-x)] and [D~(x) D~( x) j ar-e eve-n and odd
functions, respectively, the "+"curves repre-
sent the even and the "-"curves the odd solutions.

For certain values of vp0 approximate solu-
tions with a simple physical interpretation may
be constructed. For small ~p0, g is small and
[h -y(x/l)'-1] is negative. As &up0 is increased,
[8 -y(x/I)'-I] becomes positive but only near x = 0.
Then, the wave is trapped by the potential well
and is quantized by it rather than by the walls at
x = +l. Such quantization condition is v+ 1 = n,
where n= 1, 2, ~ ~ . The dotted curves in Fig. 2(b)
show the results of such quantization with v ob-
tained from Eq. (5). It can be seen that the ap-
proximate solution very well approximates the
exact one at low cup0. As vp0 increases, the
boundary at x =+l becomes more and more irn-
portant and dotted curves deviate from the solid
ones. However, the spacings of the curves in
ec/&u remain fairly uniform because the zeros
of D&(x) crowd closer for large x. In the approx-
imate solutions there is only one independent
parameter, P/yT.

The agreement between the observed ~d the
calculated "-"curves is sufficiently good to lend
credence to the model adopted. It can be in~-
proved (or made worse) by changing y, T. or I
This, we feel, is not worth doing, because the
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actual experimental geometry is cylindrical and
not planar, and not enough is known about actual
density distribution in the presence of a magnetic
field.

We wish to thank Dr. J. A. Morrison and
Dr. J. McKenna for helpful discussions regard-
ing the validity of the method used in solving the
Boltz mann equation.
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In the linearized Boltzmann equation we neglected
the linear term f&E& as compared with the term f+&,
where the subscripts 0 and 1 refer to unperturbed and
perturbed quantities. Dimensional analysis sho~s that
the neglected term is of the order (lD/X)2 smaller than
f/&, where lD is the Debye length and A, is a measure
of the wavelength of the oscillation.

SThis method may be used to solve the Boltzmann-
Maxwell equation for arbitrary finite geometries. The
details of the method will be published elsewhere.

~~For resonances near cu=g~~ with n& 3, successive-
ly higher powers of T need to be retained.

~~H. Bateman, Higher Transcendental Functions {Mc-
Graw-Hill Book Company, Inc. , New York, 1953),
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SUPERCONDUCTlVITY OF TUNGSTEN
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Superconductivity has been observed in a sam-
ple of high-purity tungsten. At present our data
indicate that the superconducting-to-normal
transition occurs at a temperature less than
0.011'K. (Calculations suggest a lower limit
of 0.005'K. ) The data were obtained with the
sa,mple in zero external magnetic field using a
dc measuring field of 0.10 oersted. A measur-
ing field of 0.2 oersted is sufficient to drive the
tungsten normal at the lowest temperature
reached. The extremely low temperature nec-
essary to observe the transition was produced
by adiabatic demagnetization of about 28 grams
of potassium chrome alum which had been al-
lowed to crystallize around a system of copper
wires. The single-crystal, high-purity tung-
sten sample was tightly enmeshed in these wires
about 8 cm below the salt by using G. E. 7031
adhesive and nylon thread. Susceptibility of the
saIt a.nd the tungsten were independently observed
by a. dc mutual inductance coil system and a bal-
listic type galvanometer. ~ Figure 1(a) shows
the tungsten transition as the system warms up
from the lowest temperature achieved. Gal-
vanometer deflections (which are a linear func-
tion of the susceptibility) are plotted versus
elapsed time after demagnetization. Figure 1(b)

shows the changes in susceptibility of the potas-
sium chrome alum for the same time intervals.
Notice that the superconducting-to-normal transi-
tion of the tungsten occurs before the salt reaches
its maximum susceptibility, which has been de-
termined to be 0.011'K.'

A superconducting-to-normal transition was
observed in two separate experiments. After
the initial observation of the superconductivity
of tungsten (Run 1), we failed in our efforts to
reproduce these data, i.e. , to observe super-
conductivity at all in the tungsten, until our
ninth run five months later. %e now believe
that the main problem was one of reproducing
the good thermal contact between the grown
chrome alum and the copper wires that was
achieved in the earlier experiment. Hence, we
were not cooling the tungsten to a low enough
temperatur e. By systematic investigation we
now believe that we have devised a much more
satisfactory technique for achieving good ther-
mal contact, and this was manifest by the suc-
cess of our Run 9 experiment with tungsten. A
comparison of the two transitions is shown in
Fig. 2. Both transitions occur at a tempera-
ture less than that of the maximum susceptibil-
ity of the salt (0.011'K). We believe these data


