DYNAMICS OF THE π - ω RESONANCE*

Ernest Abers California Institute of Technology, Pasadena, California (Received 13 December 1963)

The dynamical model presented here strongly indicates a $1^+ \pi - \omega$ resonance, having all the properties of the "B meson" observed by Abolins et al.,¹ at 1220 MeV, including the absence of its decay into two pseudoscalar mesons or into $\pi + \varphi$.

 $\pi-\omega$ scattering can occur in all I=1, G=+1states with spin and parity different from 0⁺. Odd-parity, odd-J (angular-momentum) states can connect to two pseudoscalar mesons; in the remaining states, $\pi+\omega$ is the lowest known twomeson threshold. The following remarks are restricted to these states. If the *B* is seen to decay into $\pi + \pi$ or $K + \overline{K}$, it cannot be the resonance we shall predict here. In these states the next known threshold is $\pi + \varphi$, so that elastic $\pi-\omega$ unitarity is approximately valid in a substantial region.

The ρ meson is the known particle of lowest mass which can be exchanged in either of the crossed channels; therefore, we assume that the ρ -exchange force, Fig. 1, is the most important. In the partial-wave amplitudes, Fig. 1 gives rise to a short cut close to the physical region, and therefore may be expected to dominate low-energy scattering, in analogy with nucleon or (3,3) resonance exchange in pion-nucleon scattering. The most important omitted effect is probably the exchange of the *B* meson itself.

If the $\pi\varphi$ channel were included, one should expect from the same arguments that ρ exchange remains the dominant force, since ω and φ have identical quantum numbers. From the experimental absence of three-pion decays of the φ , we know that the $\pi\rho\varphi$ coupling must be much smaller than the $\pi\rho\omega$ coupling; therefore, $\pi\varphi$

FIG. 1. Model for π - ω scattering.

scattering should be negligible compared to $\pi\omega$ scattering. Thus the plausible assumption of the dominance of ρ exchange predicts that the decay of a $\pi\omega$ resonance into $\pi + \varphi$ should be greatly suppressed, as is observed for the *B*.

The effect of the force shown in Fig. 1 can be studied by a version of the N/D method. The absence of appreciable connection to the $\pi\varphi$ channels permits the extension of approximate unitarity up to a much higher mass, for example, the $K^*(725)$ - \overline{K} or η - ρ thresholds. The absence of obvious competing forces (nearby singularities in the partial-wave amplitude) has already been noted. Therefore, in the spin-parity states under consideration, $\pi\omega$ scattering is an extraordinarily "clean" problem for a simple one-channel N/Dcalculation, and should be as good as any other calculation of this type.

The effective $\pi\rho\omega$ vertex is taken as

$$(h/\mu)\omega^{\mu}\rho^{\nu}p^{\lambda}\rho^{\sigma}\epsilon_{\mu\nu\rho\sigma}, \qquad (1)$$

which defines the dimensionless coupling constant *h*. Gell-Mann, Sharp, and Wagner² have estimated the realtion of *h* to the width of the ω , assuming that the ω decays completely through a virtual ρ . For a width of 8 MeV,³ their formula gives $h^2/4\pi = 0.35$.

The partial-wave projections of Fig. 1, $B^{JP}(s)$, which are the Born terms in $T^{JP} = e^{i\delta} \sin\delta$, are easily computed in the helicity representation. Here, we give explicitly only the 0⁻ and 1⁺ terms. Let E_{π} and E_{ω} be the energies of the π and ω , respectively, and q their common momentum; $W = E_{\pi} + E_{\omega}$, $s = W^2$, and

$$x = 1 + (2m_{\pi}^{2} + 2m_{\omega}^{2} - m_{\rho}^{2} - s)/2q^{2}.$$
 (2)

Then

$$B^{0^{-}} = (\hbar^2/4\pi) \frac{2}{3} (q/4W) (m_{\omega}^2/m_{\pi}^2) [Q_0(x) - Q_2(x)], (3)$$

which corresponds to a repulsive force. Thus, in this model a pseudoscalar resonance is impossible. The analogous formulas for J=2show that the ρ -exchange force is repulsive in both the 2^+ and 2^- states.

There are two 1^+ states. In the helicity representation it is more convenient to write T as

a matrix between transverse (t) and longitudinal (l) states rather than the more familiar S and D waves. The elements of the B^{1+} matrix are

$$\begin{split} B_{tt}^{1+} &= -\frac{h^2}{4\pi} \frac{q}{4Wm_{\pi}^2} \{ (\frac{1}{3}q^2 + \frac{4}{3}E_{\pi}E_{\omega})Q_0(x) \\ &+ (E_{\pi}^2 + \frac{4}{5}E_{\omega}^2)Q_1(x) + (\frac{2}{3}E_{\pi}E_{\omega} - \frac{1}{3}q^2)Q_2(x) \\ &+ \frac{1}{5}E_{\omega}^2Q_3(x) \}, \\ B_{tl}^{1+} &= B_{lt}^{1+} = -\frac{h^2}{4\pi} \frac{qm_{\omega}}{2\sqrt{2}Wm_{\pi}^2} \{ \frac{1}{3}E_{\pi}[Q_0(x) - Q_2(x)] \\ &+ \frac{1}{5}E_{\omega}[Q_1(x) - Q_3(x)] \}, \\ B_{ll}^{1+} &= (q/4W)(h^2/4\pi)(m_{\omega}^2/m_{\pi}^2)\frac{2}{5}[Q_1(x) - Q_3(x)]. \end{split}$$

T was computed by the first-order, or determinantal, method, with elastic unitarity, which has been described in detail elsewhere.⁴ The amplitude is written $T = BD^{-1}$, where

$$D_{ij} = \delta_{ij} - \frac{(s - s_0)}{\pi} \int_{(m_{\omega} + m_{\pi})^2}^{\infty} \frac{B_{ij}(s')ds'}{(s' - s)(s' - s_0)}.$$
 (5)

The mass of the resonance is the solution to $\operatorname{Redet} D(m_r^2) = 0$, and its width may be defined as

$$\Gamma_{r} = \frac{\operatorname{Im} \det D(m_{r}^{2})}{m_{r} \operatorname{Re}(d/ds) \det D(m_{r}^{2})}.$$
(6)

The integral in Eq. (5) diverges, so that a cutoff is necessary. The computation was performed for a range of cutoffs. The subtraction point s_0 was taken at the left end of the short cut to insure approximate crossing symmetry as well as possible. The results do not vary appreciably as s_0 is moved over the short cut. In this method, the resulting matrix is not symmetric, and the ratio $R = T_{tl}/T_{lt}$ is a measure of the approximation. In all cases, 0.77 < R < 1.0, a considerably better result than has been found in other determinantal calculations. The results are summarized in Table I for various values of the cutoff energy Z.

Table I. Position and width of 1^+ resonance.					
$h^2/4\pi$	0.10	0.15	0.20	0.25	0.35
Position (MeV)					
Z = 1.5 BeV	1303	1195	1130	1099	1042
Z = 1.75 BeV	1171	1090	1046	1013	96 6
Z = 2.00 BeV	1088	1019	980	•••	•••
Width (MeV)					
Z = 1.5 BeV	712	270	170	119	63
Z=1.75 BeV	140	73	40	21	10
Z = 2.00 BeV	51	19	4	•••	•••

For a reasonable range of cutoffs, a low-energy 1^+ resonance may be expected if $h^2/4\pi$ is of the order predicted by the ω width. To obtain a resonance at 1220 MeV, one must take $h^2/4\pi$ of the order of 0.1 or 0.15, more in agreement with the self-consistent value predicted by Ze-mach and Zachariasen⁴ than with the value predicted from the formula of Gell-Mann, Sharp, and Wagner,² together with the width measurement of Gelfand et al.^{3,5}

In sum, the model of ρ -exchange dominance, together with the observed rates of ω and φ decays into three pions, results in a force of the proper sign and strength to predict an axialvector $\pi\omega$ resonance which does not decay into 2π , $K + \overline{K}$, or $\pi + \varphi$, and therefore may be the *B* meson.

The author would like to thank Dr. Y. Hara, Dr. L. A. P. Balázs, and Dr. W. G. Wagner for their helpful comments.

J. Schultz, J. Steinberger, and T.-H. Tan, Phys. Rev. Letters <u>11</u>, 436 (1963).

⁴C. Zemach and F. Zachariasen, Phys. Rev. <u>128</u>, 849 (1962).

⁵Of course, in this type of computation, particularly in view of the necessity of a cutoff, one may not take seriously the exact numerical results.

^{*}Work supported in part by the U. S. Atomic Energy Commission.

¹M. Abolins, R. L. Lander, W. A. W. Mehlhop,

Nguyen-huu Xuong, and P. M. Yager, Phys. Rev. Letters <u>11</u>, 381 (1963).

²M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev Letters <u>8</u>, 261 (1962).

³N. Gelfand, D. Miller, M. Nussbaum, J. Ratau,