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%'e believe, then, that although B'+ is attractive,
more has to be learned before one can draw con-
clusions on the 1+ state of m~ scattering.

The author wishes to thank Dr. R. F. Peierls,
who suggested this investigation, for many en-
lightening suggestions and discussions through-
out this work. He would also thank Dr. G. C.
Wick for a clarifying discussion on the use of
helicity amplitudes.
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FIG. 3. Total cross section for zen scattering from
a 2 resonance.

This formula is useful when one wishes to take
into account only the elastic unitarity and the
Born term. The subtraction is made at the mid-
dle of the short cut. A cutoff has to be introduced
since the integral diverges. In the spirit of an ef-
fective-range calculation, we shall replace the
integral by a constant adjusted to give a resonance
at S'= 8.70. Thus essentially we are doing a one-
parameter fit to the resonance with width propor-
tional to (f'/4m). The result for the total cross
section is shown in Fig. 3 (f'/4~ =0.45). It is
noteworthy that we end up with a. resonance whose
width is roughly equal to 100 MeV. This is in
good agreement with experiments. ' Our improve-
ment over the static calculation of Peierls comes
about essentially from the steeper fall-off of
8 shown in Fig. 2.

Turning now to the 1+ state, since the p ex-
change contributions are mainly from "far-away"
singularities, it does not stand out among all the
other exchanges. Thus it is not really consistent
to perform a calculation with p exchange alone.
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~The uncertainty of the width should be largely due
to the uncertainty in (f2/4'), both from the theoretical
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Recently there has been discussion'~ concern-
ing the possibility of combining interaction sym-
metries (for instance SU(3) for strong interac-
tions) and relativistic invariance in a nontrivial
way. One of the motivations is the possibility of
obtaining exact mass formulas' for particles be-
longing to the same representations of the inter-
action group. In this paper the impossibility of

such combinations, under a certain restrictive
condition, is pointed out.

Consider an interaction symmetry defined by
a semisimple Lie group I. %'hen combined with
Lorentz invariance, the usual assumption is that
the group T that describes the full symmetry is
T =I&I-, where L is the inhomogeneous Lorentz
group. This, of course, leads to the conclusion
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that particles belonging to the same irreducible
representation of I have the same mass since the
irreducible representations of T are products of
those of I and I .

It is clear that if particles belonging to the
same representation of I are to have different
masses, then the generators of & (denoted by &;)

do not in general commute with the translation
operators, that is, in general

[I , p ].x0.
2

where the structure constants must satisfy

2 . 2C. =-C
7

C. C. +C C. . +C. C . =0.P S P S P S

2s jk ks 2j 7s k2

The restriction imposed immediately after
Eq. (1) implies

2
C. =0 for j- n and k&n+4.

jk

(8)

(7)

(8)

The problem then is to find a Lie group T that
has as generators those of I and I and for which
inequality (1), in general, holds. A further re-
striction to be imposed on T is that the genera-
tors of I commute with the generators of the ho-
mogeneous Lorentz group. This of course im-
plies that if one applies both a homogeneous
Lorentz transformation and an interaction-sym-
metry transformation on a state, the transformed
state is independent of the order in which the two
transformations are applied. It further implies
that the quantum numbers associated with the in-
teraction symmetry do not change when one per-
forms a homogeneous Lorentz transformation.
With this restriction it is shown that indeed [&f,

p&] =0 and thus T =IxL.
The generators of the Lorentz group satisfy the

familiar commutation relations

[M,M ] =f[g M +g M
p v' Ac p. a A. v gA. vg

+g M +g M ],
vcr p, A. A.v op '

Consider Eq. (7) for i - n, j&n+ 4, n+ 1- k
- n+4, P ~ n. The restriction on T implies
C&s = Cfj ——0 and thus Eq. (7) reduces to

C. Pe. '=0.
2s jk

From Eq. (3) there is at most one value of s in
this sum for a given j and k for which Cjk 4 0
and for a given value of s, n+ 1 ~ s ~ n+ 4, a pair
of values 7 and k exist for which Cjk 0. Thus

C. =0 for i ~ n, n+1» s - n+4, P ~ n.p
2S

(10)

Now consider Eq. (7) for n+ 1 - p - n+ 4, i - n,
j & n+4, and n+ 1 ~ k - n+4. For this case Ci&
=0 and Eq. (7) reduces to

C. PC. C. ~C . =0.is jk js ki

In Eq. (11)both s indexes need only range be-
tween n+1 and n+4. Consider the particular
case j=n+5 and k=n+1. With the aid of Eq. (3),
Eq. (1) can be reduced to

[p„,p, ] =0. (4)
p n+2 p n+1

i n+2 jk jn+1 ki

We will denote the generators of the group I by
J;, i = 1, .", n, where n is the dimension of the
group, and the generators of the Lorentz group
by J-, n+1» i- n+10. In particular,

where

+C, PC "'2-0
j, n+2 ki

C. =0 unless P=n+2,p
n+1

P. =J . for 1- i~4,i n+i

(5)

The full symmetry group T is determined by
the commutation relations

[Z. , Z ] =C. 'Z. ,j'k jk 2'

C. =0 unless P =n+1.p
j,n+2

This implies Cf n+2 =0 for all i unless P =n+ I
or P=n+2. LettingP=n+2, one obtains

k n+2
ik i, n+2

If one considers Eq. (7) for the case j=n+8 and
k = n+ 3 one concludes C2 n+ 2

+ = 0. Continu-
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ing in a similar way we find

C. =C.6. , i ~n, n+1~ j, k~m+4.
ik i jk'

Now consider Eq. (7) with n+ 1-P, k- n+4,
and i, j ~ n. From the previous discussion for
this case we can write

C =5 C. , C. =6 C.,s sP

C, C. =5 C. ,ks Pk s' is Ps i'

C . =-5 C..
As sk s

Inserting these relations in Eq. (7) leads to the
conclusion that

C C. , =Ofori, j-n.
s gj

If one introduces a standard coordinate system'
of the group I, it is easy to see that Eq. (13)
implies Cs =—0. Thus

kC. . =0 for i ~ n, n+1- j, k- n+4.
U

(14)

Now consider Eq. (7) with i, j & n, n+ 1 ~ 0
~ n+4, P &@+4. From the original assumption
and the previous discussion, it follows that Cjs

p==C;s =0 for this case. Thus Eq. (7) reduces to

C C. . =0
ks ij (15)

Since this must be true for all i, j ~ n, using
again the standard coordinate system of the group
I, one sees that

C =—0 for P&n+4 n+I ~ k- n+4 s ~ n. (16)p
ks )

Combining Eqs. (8), (10), (13), and (14) leads
to

g
C . =Ofork~n, j~n+1, alii:

kj

that is, T =I&L, Thus if one demands that the in-
teraction symmetry commute with the homoge-
neous Lorentz transformation and requires the
existence of a Lie group T whose generators are
those of the interaction-symmetry group and the
Lorentz group, then it follows that T =ILL. This
applies in particluar to the group SU(3).

In conclusion, if one wishes to combine such an
interaction symmetry with Lorentz invariance to
form a larger group that will give mass splitting,
one must accept not only lack of commutation of
the symmetry-interaction generators with the
Lorentz translation generators but also their
lack of commutation with the homogeneous Lorentz
generators. It is felt that this will, in general,
lead to interpretation difficulties.

It should be noted that Eqs. (13) and (15) are
true even if the interaction-symmetry group is
not semisimple; for some such groups one can
still deduce Eqs. (14), (16), and (18).
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