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Assuming Mach's principle, ' one might expect
that the general expansion of the universe had

some effect on the evolution of the solar system
and of the galaxy. There have appeared in recent
papers'&' arguments that general relativity does
imply an important connection between local sys-
tems and the rest of the universe. It is our con-
tention that this is incorrect. The apparent con-
nection is only formal, and the "effect" is unob-
servable. The fact that general relativity pre-
dicts no appreciable effect on the solar system,
or galaxy, due to the expansion of the universe
has been previously expressed by several authors. '

Consider a bound system such as the solar sys-
tem, galaxy, or a cluster of galaxies. The prob-
lem is to find the effect, if any, of the time de-
pendence of the cosmological background metric
on the equations of motion of this dynamical sys-
tem.

For a model universe containing matter in the
form of a uniform continuous distribution of ra-
diation and/or dust, the metric is given by the
Robertson-Walker line element

dr= td'- a(t)[ rd' (/1-Ar )+r'dQ],

where A. =+1, 0, or -1 for a closed, flat, or hy-
perbolic universe respectively. This model may
be a useful approximation to our universe for dis-
tances large compared with the typical separations
of galaxies, and if it be supposed that the major
part of the mass of the universe consists of uni. -
formly distributed radiation, such as neutrinos,
this line element should be valid to quite small
distances (in the absence of nearby massive
bodies). The largest localized dynamical system

to be considered is the cluster of galaxies, for
which the characteristic size is presently very
small compared with the radius of the universe.
With the origin of coordinates at the center of the
localized system the term

Ilail

is small within
the system and is negligible compared with unity.
Thus to a good approximation (and without approxi-
mation for a flat cosmology) the background met-
ric for the dynamical system can be written as

d7 =dt' —a'(dr +r'dQ)

The conformal flatness of this geometry can be
exhibited by introducing a new time coordinate
such that

d7 = a'(t) fdt~ - dr' rdQ], -

or making use of the Minkowski form q~j,

dr =.a (t)t). .dx dx .
2 2- j

U

Suppose that in this space two charged particles
are electrically bound in circular orbits, with the
particle masses very small. To compute the par-
ticle orbits it is convenient to introduce a confor-
mal transformation, interpreted not as a mapping
of the space upon itself, but as a redefinition of
the metric tensor at the same coordinate point in
the same coordinate system, to remove the con-
formal factor a'(t) from Eq. (4).' This transforma-
tion is to be interpreted as a "units transforma-
tion, '" and is conveniently supplemented by the
additional assumption that the unit of reciprocal
mass is transformed like the units of length and
time. '& This units transformation leaves invari-
ant the measures of e, h, and c. Gursey' has pre-
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where Et&-A& t-At ., and u =dx /dT In t. hese
g j

equations the particle mass is ma(t) where m is
the (constant} particle mass expressed in the orig-
inal units. The angular momentum is a constant
of the motion, and

u.a(t)rv = const, (6)

where ~ is the relative coordinate radius of the
orbit, v is the relative coordinate velocity, as-
sumed to be small compared with c, and p. is the
reduced mass of the two particles. Because a is
very nearly constant during one orbit period,

so that
pa(t)v'/r = e'/r', (7)

r o:a(t) (6)
In an expanding universe a is increasing with
time, and the radius of the orbit is decreasing
(compare Pachner'). However, in the original
units the spatial metric tensor components are
g»- a2 (a =1,-2, 3) [Eq. (4)] and the proper or-
bit radius is a constant. In these original units
the length of a real measuring rod would be time
independent.

Next suppose that the particles are uncharged
and gravitationally bound in orbit. Again assum-
ing that the masses of the particles are small,
it is known' that in the units of Eq. (6) the grav-
itational constant is

G, = G/a'(t),

with G a constant, and Eq. (7) is replaced by

ua(t)~'/r = [ma(t)]' [G /a(t)']/r'.

In the new units the radius of the orbit is inverse-
ly proportional to a(t}, and in the old units the
radius is constant. In the units provided by real
measur ing rods the radius of the gr avitationally

viously noted the simplification to be obtained by
introducing a conformal transformation into the
cosmological problem. This conformal redefini-
tion of the metric tensor does not affect the equa-
tions of motion of particles. Also, the redefined
metric tensor (qt&) is Minkowskian, and the dy-
namical problem can be discussed within the frame-
work of standard special relativity, but with a time-
dependent particle mass. The equations of motion
for the two particles interacting electromagnetic-
ally can be derived from the variational equation

0= 6 f(ZJ [ma(q .u u. ) +ed.u ]6 (x -X(w)}dr
U j

~ ~

+ (I/16')E. J' )td x,

bound orbit is a constant, even though the orbit
is in curved, expanding space.

The above calculation is valid only if the energy
content of the universe is sufficiently smooth and
uniformly distributed, e. g. , in neutrinos. For
a universe with its matter localized in galaxies,
the above analysis is inappropriate. However,
we also conclude for this case that, within the
framework of general relativity, the expansion
of the universe is without an appreciable effect
on a localized system. To see this, assume
that matter is concentrated in galaxies, and the
galaxies in the mean uniformly distributed in the
universe, with no appreciable radiation or neu-
trino energy density. Now suppose that the so-
lar system, our galaxy, and the galaxies closer
than perhaps seven megaparsecs from our gal-
axy are removed from the universe. This wouM
remove the local group of galaxies, and several
nearby groups including the M81 and Leo groups
of galaxies, although the boundary of the sphere
would still be well away from the Virgo cluster,
at 11 megaparsecs. Within the resulting spher-
ical, matter-free volume, the universe would
appear effectively spherically symmetric to very
good accuracy. Because of this symmetry,
space inside the sphere (and not too near the
boundary) must be flat even though the boundary
is expanding with time. '

Having noted that this interior region is flat we
may imagine that we return our galaxy (and so-
lar system) to its rightful place at the center of
the spherical cavity. The internal dynamics of
this system can now be treated in the weak-field
approximation, the exterior universe being with-
out an appreciable effect. Furthermore, for a
spherical cavity the other galaxies can also be
returned, their effects being treated as a first-
order perturbation on the rest of the universe,
including our own galaxy. On this scale the first-
order perturbation calculation is adequate be-
cause the perturbation to the background metric
due to these nearby galaxies is very small. As-
suming that the galaxies and possible intergalac-
tic gas represent a mean density as large as
2x10 g/cc, the perturbation of the metric ten-
sor components at the center of the sphere would
amount to only 3GM/Re'-6xl0 '.

Because the unperturbed space inside the sphere
was flat, the motion of the perturbing system of
matter in this space is well described by New-
tonian gravity theory. The gravitational force in
this system is directed roughly along the radius
of the sphere. It is this force which leads to
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the correct acceleration in the rate of separation
of these galaxies. However, we emphasize that
the nearby galaxies can produce only extremely
small tidal stresses within our galaxy, and these
stresses are further reduced because the nearby
galaxies are distributed in an approximately iso-
tropic way. That is, contrary to the claims of
Pachner, ' general relativity implies no apprecia-
ble connection between the evolution of our solar
system, and our galaxy, and the rest of the mat-
ter in the universe.
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STATISTICAL BEHAVIOR OF FINITE ISOLATED
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Rev. Letters 11, 19 (1963)].

There is a typographical error in paragraph
four, page 19: gh~ =15 should read gt&u =35.
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Equation (13), expressing the Eulerian change
in the pressure accompanying adiabatic radial
pulsation, is incorrect. The correct expression

is
~p =-$p, '-ypee (r $e )'/r . (13')va/2 2 -vo/2 2

While this expression for 5P can be justified by
a detailed consideration of the second law of
thermodynamics in the framework of general
relativity, its validity is apparent when it is noted
that Eq. (10) for the corresponding change in e
has the alternative form

5e=-)e, '-(p, +e,)e ' (r (e ' )'/r; (10')v02 2 -v02, 2

and the arguments in reference 4 of the Letter
strictly apply to this equation.

Equation (12) together with Eq. (13') constitute
a characteristic value problem for o'. This prob-
lem is self-adjoint and the variational base is now
provided by the equation

z
"& (3&o- vo)/2 2 2 "& (Xo+ vo)/2, 2 "~ (Xo+3vo)/2 „2 -vo/2, ,2 -2o e pp+Ep'r $ dr'=4 e rp, '$ dr + e ypo[(r $e '] r dr

wp +Q v Q

& (3zo+va)/2 2 2 (y, +vo)/2 (p, ')'r &'

+Q .o (pa+ &0)
(15')

With the trial function $ =revo/, Eq. (15') gives

(3y, +v, )/2 4 + (x, +3v,)/2 3, 2cr' e (pa+so)r dr = e (4r po'+9ypor )dr
N p w Q

f'~ 3(Z, +v, )/2 4 + (X, +3v,)/2 4, 2+z ( e po(pa+so) r dr-
~~

dre r (po') /(po+&o);
Q +Q
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