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In the wake of the instabilities found by taking
into account the effects of diffusion due to col-
lisions'~' in the hydromagnetic equations, effort
has been made in order to find possible mech-
anisms for stabilization of the new interchange
modes. ' A mechanism of this type has been de-
scribed in a previous paper, ' where a stability
criterion is also given. However, the problem
has remained open as to whether by inserting
into the theory the ion gyro-radius effects, ' '
one could get stabilization as obtained for the
interchange modes existing in the absence of
collisional effects.

Here we choose a class of equilibrium config-
urations which do not undergo the stabilization
previously found, ' and show that the ion gyro-
radius effects result in strongly slowing down

the growth rates, but broaden the region where
instabilities take place and do not eliminate
them. Overstability appears only if no ion drift
velocity exists in the equilibrium. All the re-
sults obtained in the absence of collisional ef-
fects are recovered as special cases.

The present stage of the theory would indicate
that possible fusion devices should be based on
having strongly sheared magnetic fields, as sug-
gested by our criterion, rather than on having
very low pressures, as suggested by the theory
without dissipation, ' in order to be stable against
inter change modes.

Here we consider a sheet pinch configuration'
so that the conclusions can be extended to more
complex ones' '

by a proper change of variables.
All equilibrium quantities are supposed to be
x-dependent, the gravitational acceleration g
acting in the x direction, and the magnetic field
8 not having x components. By equilibrium, we
mean all quantities having negligible variation
on any time scale less than the mass diffusion
time. A set of macroscopic equations derived
from the Fokker-Planck equation" is used. A
high-temperature situation is considered" so
that a» (g'/g)' 'R, where a is the ion Larmor
radius, R is the finite width of the sheet, p
= g~/(pv&R) and }f-=q)~ /(RvH) where g~ is the
transverse viscosity, gII the longitudinal resis-
tivity, p the mass density, and vH the hydromag-
netic velocity.

We first assume the ions have a drift velocity

s8 =i(k B)st +t} 8 "—i(k.i )8x x II x d x
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Here, tx =—$ ex, 8x—= Bp.e~, 88—= Bp e8, k'=kz'
+kB', Bp is the perturbed magnetic field, p and

p the perturbed pressure and density, and J the
equilibrium current. The ordering leading to
Eqs. (1) through (4) is chosen with the criterion
of obtaining the fastest modes and including si-
multaneously the effects of ion Larmor radius

vde~ so that vd=& '(p /p+g), B B'=pg-p', and

pi/p =pe/p = const are the only equilibrium con-
ditions. Here we use a set of local coordinates
ex, e8—= B/8, and e~= 58X5x, and rationalized
Gaussian units with c=1. Moreover, 8 is the
magnetic field, Pe and P, the electron and ion
pressures, P =P&+Pe, ~ the ion gyro-frequency,
and "prime" means derivative with respect to
x. Let st(r, f) = sE(x) exp(st +ik r), where k e~
=0, represent a perturbation of the ion velocity
around its equilibrium value.

Instabilities take place in a small region W
where the material flow is decoupled from the
lines of force. The region ER is centered around
the surface x =x„where k B= 0 and p' & 0. We
consider the perturbed linearized form of the
macroscopic equations given in reference 10,
valid inside &A, and expand them in & as shown
in reference 4. We further assume P«1, in
particular p=O(e+) where a &0 and p—= 2p/8',
Rp'/p =O(1), and gp/p' =O(p), so that (B B')R/8'- (k B')R'/8 = O(P) and the quantity D —=gp'k'/
(k B')'=O(1). In these conditions our stability
criterion" D & Pf(t}~/q~~~) is not satisfied as hap-
pens for a stellarator configuration. Here f is
a finite function of q&/t) ~~, t)& being the trans-
verse resistivity. " In particular, "for qz = 1.98
xg~~, f —= 1.7. Therefore, if we further expand in
P the perturbed equations, we find that in lowest
order V ( =0 and

s'p( "=i(k B)8 "-k'gp,
x x
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=i(k.B')(x-x )B "(1+ikv /s) -k'gp'g, (5)
0 x d x'
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As shown numerically in reference 3 and analyt-
ically in reference 11, the two fastest modes,
solutions of Eqs. (5) and (6), have the same
growth rate and have either kx even (B xdod) or

odd (Rx even). As long as D is finite they are
not localized and their eigenvalue s is determined
by connecting' their solution with the solution of
the corresponding hydromagnetic equations, valid
where (x -x,)/R =O(l), missing the inertial and
resistive terms. However, for D small the mode
with $x even becomes localized in &A and the so-
lution can be obtained by further expansion" in
D of Eqs. (5) and (6). Then they reduce to

s(s+ikv )pg

s -iAv
(x-x )2( +kgp'( . (7)= (k B')'

"Il

There is a set of eigensolutions of Eq. (7) of the
form

=exp[-0(x-x )'/2]H (x-x ).x 0 '
n 0'

The one corresponding to the largest eigenvalue
occurs for n=0 and leads to the dispersion rela-
tion

(k gp')~
s(s'+k'v ') =—l =-, l-=)i(Dk B')'v R/p. (8)d p (k B'j H

%hen D is not small we obtain, generalizing a
procedure given in reference 1,

s(s +k v ) = g(4k'B ) vQ/p

where 6 =—&[1 - (1 - 4D)"'] and D - —,'. Equation (8)
shows that when vd = 0, s = (yuHR/p)"'(Dk B')"'
ccgI~ A' g ~, and when the ion gyro-radius ef-&j'3 2j'3 2j'S

and resistivity. Therefore, s-k vd-g~~(eR) '
-eRk(gp'/p)"2, kR =O(1), k =k&, k 8 =k.B'(x -x,).
Clearly, vd =p'/(Qp) =avthp'/(2p), where a is the
ion gyro-radius and vth the ion thermal velocity.

After using the equilibrium conditions, Eqs. (1)
through (4) reduce to

s(s+ikv )p$ "

fects are relatively large,

a' (kB')2 v '(k j H p
(10)

sB = i(k B)sg + q B
x x tlx

- i k i (k.B)H-—
Qp B A x (13)

(14)

P= P)
p
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where v& is an effective velocity v&=E/8, so
that v~=vp, but v~gvd. By following the same
procedure leading to Eq. (9) we now obtain

s(s -ikv )(s - i2kv ) = y(bk B')'v M/p. (16)

The results differ from the previous case only by
a Doppler shift kv~. %e see in particular that
the resistive modes become overstable with fre-
quency of oscillation

and having the same growth rate as expressed by
Eq. (9).

When D =0(P), then the system can no longer be
treated as incompressible. " In this case the de-
stabilizing effect of the electric field along the
field lines, '

gIt J~, is counteracted by the trans-
verse electric field g~J~ now directly entering
the stability problem (here J~ and Zi are com-
ponents of the perturbed current). Therefore,

The modes remain purely growing but strongly
slowed down. In particular the growth rates do
not depend on the magnitude of wavelength, so
that the fastest purely resistive modes are the
most slowed down. Moreover,

(
eR —= [Re(a)] "'=—

I

',
I

I, ~l (l 1)2(gp'Rj a i' )
for D small, and eR=vd(p/&) k/(k. B') for D~ &.

Since P'/(gp'R)» 1, eR» a, as required for the
validity of the present treatment.

If there is no drift velocity but an electric field
Eex=HP ex/(&p) at equilibrium, we obtain, in-
stead of Eqs. (1), (2), and (3),

s'(s - ikv )p$ "=i(k B)B "- k'gp ~ (12)
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(1 - ikv /s)B

+k'p'g$ (s+ikv ) ',
x (18)

=i(k B)(1-ikv /s)(1 i+k v/s) '$ (19)

there are no evident reasons for expecting that
the ion gyro-radius effects should neutralize this
stabilizing influence.

Finally, if D = 1 (see reference 1, Appendix E),
the effects of resistivity become unimportant and

purely hydromagnetic localized interchange modes
with k- (eR) ' can exist. The equations of which

they are solutions are, in lowest order,

s'p(( "-k'( ) =i(k.B)(B "- k'5 )x x x x

ferent velocity with which ions and electrons
move across the magnetic field, a charge separa-
tion is built up. This is out of phase with the
charge separation due to the interchange (e. g. ,
gravitational) force. When collisional effects
are important, the destabilizing force results
from the difference between the gravitational
force and the force restraining the material from
crossing the magnetic field line. ' The charge
separation which occurs appears to be no longer
out of phase with the one due to the different
gyration radii of ions and electrons.

I am grateful to John M. Greene for an illu-
minating objection. The importance of the Hall
effect term was pointed out first by D. B. Chang
and M. N. Rosenbluth.

In Eq. (19) the Hall effect contribution clearly
cancels out justifying the hypothesis implicitly
expressed in references 5, 6, and 7, that it is
negligible. Equations (18) and (19) reduce to

s 'p(& "-k'g ) = -(k.B')2(x-x )'

x[& "-k'$ +2) '(x-x ) 'j+k'gp'g (20)

where

s(s+ikv ) =s (21)

s(s -ikv ) = s0 (22)

results, so that they differ' by the Doppler shift
kid, but lead to the same stability condition,

When collisional effects are not important,
stabilization can result since, due to the dif-

as obtained in reference 7 with a different meth-
od.

By taking the inner product of Eq. (20) by 4*
over the space variable, one sees that s~' is
real and, since the Suydam criterion D& 4 is sat-
isfied, ' positive. Therefore, stability occurs if
kz d & 2sH, as first obtained in reference 5.

If no drift velocity but an electric field exists
at equilibrium, instead of Eq. (21)
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