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The problem of the electromagnetic self-ener-
gy in classical physics can be stated as follows.
The theory of systems involving n point charges
leads to one or more of the following situations:
(1) There occur divergent expressions; these can
be traced to the interaction of each charge with
itself. (2) The theory can be made mathematical-
ly well defined by the introduction of cutoffs,
form factors, or other ad hoc modifications.
(3) It is necessary to carry out a mass renormali-
zation. A recent presentation of electrodynamics
which exhibits clearly the last point was given by
Bergmann. ' lt is the purpose of this note to pro-
pose a formulation of the classical theory of point
charges which is free of these undesirable fea-
tures. '

The two basic assumptions of the theory are
these:

(A) There exists an action integral I (to be
specified below) which is invariant under the full
Lorentz group including inversions.

(B) Asymptotically, for 7. - +~ the particles are
free and are in uniform motion.

The essential point that enables a solution of

this old problem is the realization that one is
dealing with not only one electromagnetic field,
but with two such fields. These two fields are
both mathematically and physically entirely dif-
ferent; they satisfy the homogeneous and the in-
homogeneous equations, respectively. Thus, the
field strength tensor F of the total field will, in
general, consist of two parts, F =Ff+Fb, a "free"
and a "bound" field.

I hasten to add that this separation is not unique
but can be made unambiguous by one of the follow-
ing requirements:

(a) Each part should be time-reversal invariant
(i. e. , the tensor components should at most
change in sign). In this case we write F =F +F+

(b) Asymptotically, for t --~, F& reduces to a
(generalized) Coulomb field (i.e. , a field which
differs from the usual Coulomb field at most by
a Lorentz transformation). In that case we write

+I' ret.
(c) Asymptotically, for t -+~, Ft, reduces to a

Coulomb field: F =Eout+Eadv
+in and +out satj.sfy

geneous equations; the others satisfy the inhomo-
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geneous ones.
Consider first a closed system of only one point charge and an incident radiation field Fin. Let the

particle position be labeled by the four-vector z{X), where X is some monotonically increasing param-
eter. Let the fields by represented by the four-vector potentials 2 and A+. The theory can then be

based on the following action integral:

I=-~ f (-z z ) dx+e fA (x)d x5 (x-z(t))z dX —,'- fF (x)E (x)d x-'; fF (x)F (x)d x. (i).a. 1/2 — 4 .n, — —nP 4 QP 4

Q Q 4 QP QP +

Heaviside-Lorentz units are used and c =1; zQ
—= dza/dw, and the metric has signature +2. The
field strength tensor is defined in terms of the

potential,

F -=8 A -8 A; F +=-8 A +-B~

The action integral is a functional of three four-
vectors, z, A, and A . They are to be varied
independently. Keeping the boundaries and end

points fixed, Hamilton's principle yields the
Euler-Lagrange equations in the usual way,

is also time-reversal invariant, but satisfies the
homogeneous equation. Since assumption (B)
implies

lim (F -E ) =0,ret C

lim (F -E ) =0,
adv

+OO

where EC is the Coulomb field, the above separa-
tions (b) and (c) hold,

Here,

ma =eF U,
V

(E&u E &P)
+

F—QP.

Q

(2)

(4)

F +E =F +E =F +F
+ in ret out adv

From this follows the identification

F =2(F +E ) =E. +E =F . -E
in out in — out

one can show' that

(io)

j (x) = ef -(5xz{ ))Tu(T)d7,

u =- dz /dT, a =- du /dT,

and the proper time is defined by

(5)
where

Q

i' =(e /6')(da /dT-a a u )

dT=(z z ) d~..a. i/2
Q

(6)

The linear combination

PV t( PV E PV)
ret adv

Equation (2) is the equation of motion of the
charged particle; Eqs. (3) and (4) characterize
F and F+ as solutions of the homogeneous and
the inhomogeneous Maxwell- Lorentz equation,
respectively. The total field is F =E+F+.

Equations (3) and (5) give F as some linear
combinations of retarded and advanced Lidnard-
Weichert field strengths. But since we require
time-reversal invariance in the sense of (a)
above, F+ is uniquely

QV g(E QV E PV)
+ ret adv

ma =eF. U +IPV
ln v

(i2)

Noether's theorem assures that the Lorentz
invariance of the action integral I implies ten
conservation laws. In particular, momentum
conservation results in the form

dP +dP +dP = 0.
D

Here P~ =me~ is the particle momentum,

=f e" d'a,
(T) v (T) o. '

—P V —P. Q— V g P, V— —QP
40

p

is the Abraham four-vector of radiation reaction.
Therefore, the equation of motion (2) is the Lo-
rentz- Dirac equation'
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is the free-field momentum, and

pH 3P (T)= f ( )
e d (x,

j(jV —PQ V PCM — V g P. V— QP9
D +0. + a ' o.P +

is the momentum associated with the "interac-
tion" between the free field E and the bound field
E+. It is to be noted that the gauge-dependent
canonical energy tensors TI"v and TDI"v, which
arise from the variation of the boundary, com-
bine with the gauge-dependent term due to the
second integral in (1), and give symmetrical en-

ergy tensors e&v and eDI"v which are gauge in-

variant.
Since E, Fi„, Fo„t, and F are free fields,

there also arise the conservation laws

dP =dP. =dP =dP = 0.
in out

If the system is not closed, the action integral
(1) can easily be amended by a suitable term in
the external field. The conservation laws (13)
will then no longer hold.

The action integral for the closed n-particle
system differs from the sum of the one-particle
integrals only by the "Coulomb" interaction be-
tween the charges. In obvious notation,

I=-Q m, f(- z, z, ) da. - efA (x)5 (x-z.)z. da. -4 fF F d x-2fF F (x)d x. n. I/2 . n, — —np4, — np 4

1. E EQ s l Q 4 l l l Qp
2 ~pi=1

1n n Q.
+—Q Q e.e.f z, z 5((z.-z.)')dx.di. .

2. . i j i je i j i j'
g = 1j =1

(f ~j)

(15)

The Fokker-%heeler- Feynman theory of action
at a distance with complete absorption is therefore
a special case of this theory, obtained by putting
all fields equal to zero.

The field equations arising from this action in-
tegral are identical with (2) and (3), except that
the current density is now given by

j (x) = Q j. (x)-=Q e.f 5 (x-z.)v, dT.
Pl p Pl

i . i 4 i i i

instead of (5). The equations of motion are the
set of coupled equations,

m a =e F„ v + Q F. v
k " p, o, k

n . iret a'
1=1

(f ~~)

where

energies and no divergences, and there is no
self-stress problem. The point charge is stable
because it is elementary. 'The theory does not
allow it to consist of parts which could repel each
other.

Despite the essential appearance of two kinds
of fields throughout the theory, a test charge mill
see only one field, viz. the retarded field, of
the charges.

Finally, it should be noted that the basic as-
sumption (B) played an important role in the deri-
vation of (9) and the identification (10). It is also
important for singling out the physically meaning-
ful solutions of the equations of motions. Run-
away solutions can thereby not occur.
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E =-E. +E
in k-

Because of (11) these are exactly the i,orentz-
Dirac equations for the n-particle system.

The interaction of E can never occur with its
own source particle, but occurs via Eret =E +E+
mith all the other charges. The only self-inter-
action occurs via E; this is just the radiation
reaction. As a consequence, there are no self-
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