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In this plot a pure helicon wave would be repre-
sented by the straight dashed line u/vs = vtf/vs.
%'e see that the lower branches of the dispersion
relation represent excitations which are helicon
waves for v&/vs«l and which resemble sound

waves for vlf/v~»1. The upper branches rep-
resent excitations which change from sound
waves for vH/vg«1 to helicon waves for vlf/vs
v& 1. The experimental data points contain an
adjustable parameter in the following sense:
The magnitude of the wave number, A, corre-
sponding to a given peak is not accurately known.
However, in a series of peaks in the beat pat-
tern two successive peaks differ in wave number

by 2w/d, where d is the thickness of the speci-
men. Since A decreases with increasing B„we
arbitrarily assign a k value to one, and only one,
peak in each series of peaks. In Fig. 2 we have
arbitrarily assigned a k value to that peak in
each series of peaks which appears at the high-
est magnetic field. In each case the k value was
chosen to make the data point lie near the cor-
responding theoretical curve. The adjustable
parameter enters essentially as a translation of
each series of data points along the ordinate in

Fig. 2. Consequently, the data points are to be
compared only with the slope and curvature of
the theoretical curves.

From a study of the 20- and 30-Mc/sec data
discussed here and additional data obtained at
frequencies ranging from 5 Mc/sec to 50 Mc/sec,
we conclude that the coupling of helicon waves
and transverse sound waves exists in potassium,
and that there is good agreement of the theory
with experiment.

It is a pleasure to acknowledge the technical
assistance of G. Adams. Miss B. B. Cetlin
computed the theoretical curves.

~P. Aigrain, Proceedings of the International Con-
ference on Semiconductor Physics, Prague, 1960
{Czechoslovakian Academy of Sciences, Prague, 1961),
p. 224; R. Bowers, C. Legendy, and F. Rose, Phys.
Rev. Letters 7, 339 (1961).

20. Akramov, Fiz. Tverd. Tela 5, 1310 {1963) [trans-
lation: Soviet Phys. -Solid State 5, 955 (1963)].

3T. Kjeldaas, Jr. , Bull. Am. Phys. Soc. 8, 428,
446 (1963); and private communication (to be published).

4D. N. Langenberg and J. Bok, Phys. Rev. Letters
11, 549 {1963);J. J. Quinn and S. Rodriguez, Phys.
Rev. Letters 11, 552 (1963); Phys. Rev. 133, A1589
(1964).

5T. Kjeldaas, Jr. , Phys. Rev. 113, 1473 (1959);
M. H. Cohen, M. J. Harrison, and%. A. Harrison,
Phys. Rev. 117, 937 (1960).

At 4.2'K the approximate value of ~~& where ~~ is
the electron cyclotron frequency ranged from 70 to 220
at the magnetic fields employed in the experiments.

~Previous experimental arrangements used on metals
have allowed only observation of standing-wave reso-
nances corresponding to an odd number of half-wave-
lengths contained in the specimen [F. E. Rose, M. T.
Taylor, and R. Bowers, Phys. Rev. 127, 1122 (1962);
R. G. Chambers and B. K. Jones, Proc. Roy. Soc.
(London) A270, 417 (1962)]. Our traveling-wave ex-
perimental technique is readily extended to much
higher frequencies than can be employed using the
standing-wave technique. The cyclotron damping
effects first observed by Taylor, Merrill, and Bowers
[M. T. Taylor, J. R. Merrill, and R. Bowers, Phys.
Letters 6, 159 (1963)] are more clearly resolved using
the traveling-wave technique at high frequencies and
will be discussed in a future publication.

8The calculated phase velocities of the two shear
waves which propagate in the [110]direction in potas-
sium are 0.67 X10 cm/sec and 1.70 X10 cm/sec.
Here we have used the elastic constants listed by
Mason [%. P. Mason, Physical Acoustics and the
Properties of Solids (D. Van Nostrand Company, Inc. ,
Princeton, New Jersey, 1948)] and the lattice con-
stant measured by Barrett [C. S. Barrett, Acta Cryst.
9, 671 (1956)] at 5'K.
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In a recent Letter, Langenberg, Quinn, and
Rodriguez' discussed the possibility of measure-
ment of nonextremal Ferm~-surface orbits by
observing giant quantum oscillations in the at-
tenuation of sound, for sound waves parallel to
the direction of the magnetic field. In this Let-
ter we wish to point out that these same nonex-

tremal orbits (as well as other nonextremal or-
bits) may also be observed in geometric reso-
nance experiments, and furthermore, the con-
ditions for observation of these orbits are much
easier to attain in the case of geometric reso-
nance than in the quantum oscillation case. Since
geometric resonances measure linear dimensions
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where p, v, and r are the momentum, velocity,
and coordinate of the electron; E and H the elec-
tric and magnetic fields; q the sound-wave vector,
u the velocity of ions in the lattice; and t a I is
the determinant of n. ' The solution for the
primed quantities is the same as for electrons
with spherical energy surfaces; the inverse
transformation gives the solution for electrons
with ellipsoidal energy surfaces.

Thus, if the inverse transformation is applied
to the solution of the equation of motion for an
electron with spherical energy surfaces in a
constant magnetic field, one finds the following
solution for ellipsoidal energy surfaces:

of the electron orbit in real space, and giant quan-

tum oscillations measure cross-sectional areas
of the Fermi surface, it will be possible to make
both these complementary measurements upon

electrons of nonextremal orbits. %e shall cal-
culate the period of oscillation for geometric
resonances for a general ellipsoidal energy sur-
face for arbitrary angle between magnetic field
and direction of propagation of sound. As a spe-
cial case, the geometric resonance effect for
fields parallel to the sound waves will be found.
This effect was discussed by Quinn2 in a recent
Letter, using a quantum mechanical formalism,
which is actually unnecessary for this semiclas-
sical effect; for the special case considered by

Quinn, our results agree with his.
For spherical energy surfaces, there are no

parallel-field geometric resonances. Therefore
it is necessary to consider ellipsoidal energy
surfaces. This has the added advantage of clearly
showing the linear dimensions which are experi-
mentally measured in geometric resonances,
which have never been previously demonstrated
theoretically; and, of course, ellipsoidal energy
surfaces are quite realistic for a number of
materials, e. g. , semimetals.

Suppose that a portion of the energy surface is
given by 2m' =p e p. Then it is easy to show

that the Hamiltonian, the Boltzmann equation,
and the equations of motion of the electrons have
the same form as for spherical energy surfaces,
if the following transformation is made:

r(t) =r(0)+m(H n 'H) ' H(H p)t

+ = (cos~ 't - 1)+p
(d cc

8 xmv
sinter 't x a .H, (2)t c

c

where 0 is a differential vector operator, Zq($)
the Bessel function of vth order, dQ an element
of solid angle of vp, the Fermi velocity, and

]= tqxHI Iv xHI ('w
c

=[(q &'-(0 &)')f '~'-( &)')]'"i( H'). (4)

For (jH)v~r= (jH)l » 1, the function {1+t[v&uv
+ (vF H)(q H) —&u]7') ' which appears in (3) effec-
tively differs from zero only when cos&=—(vF.H)
(where vF is a unit vector) is in a small neighbor-

where p=p(0), v=v(0), vc =eH/mc, &u c
= ~c[ I n IH n ' H ]' ', and H is a unit vector in the
direction of the magnetic field. Thus, the motion
of the electron is an ellipse in the plane perpen-
dicular to a 'H; and at the same time the electron
moves with uniform motion in the direction of the
magnetic field. The physical explanation~ of
geometric resonances for the field perpendicular
to the direction of the sound-wave vector shows
that there is a maximum in the attenuation when-
ever the extremal dimension of the orbit of the
electron in real space in the direction of the
sound-wave vector is equal to an integral multi-
ple of the wave length. This is also the case for
arbitrary angle between sound wave and magnetic
field, provided that the sound-wave vector has a
nonzero projection upon the plane of the orbit,
i. e. , q is not parallel to e 'H. Thus, only for
spherical energy surfaces will no oscillations be
observed for qlIB; in fact, geometric resonances
have been observed for this geometry. '"

The exact analysis of the oscillation of the at-
tenuation may be made by transforming the spher-
ical case to the ellipsoidal case. This analysis-
will also enable us to identify the orbits which
contribute to the attentuation, that is, the (p H)
values of the orbits observed.

According to Cohen, Harrison, and Harrison, '
the conductivity tensor for spherical energy sur-
faces has the following form:

[ar (()]lot~ (g)]
o=) dQ,

1+ i[v&u +(v H)(q H) -&u]7'
p= oo c F
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cos8~=(&u - vs )/v (q H)F

=(v /v )[I-(v(u /~)](qH) '
s F C

(5)

where vq is the velocity of sound and q is a unit
vector. The half-width of this neighborhood is
[(q H)l] '. Values of v for which l (&u - v&uc)/

&F(q H) l & 1 give negligible contributions to the
summation. In the limit (q H)l»1, the integra-
tion in (3) may be performed, to a good approxi-
mation, by evaluating the Bessel functions for
cos 6) = cos8~. Thus,.=~,[«,(~, )][o~~,(~, )]

x 1+ivv +v .8 q-8 -vT 'dQ, 6
c F

where

E * = &u H ' [q~ H' - (q H)']
v c

(~ v~, )2H4 1
1~2

(q H)2 l

and the summation is over all v such that (~* is
real.

We now transform to the ellipsoidal case by

using the transformation inverse to (1). Then

( v becomes
jh

q
l

t'2z ) (q q)g 'H)-(qH)'

v (o ~ ( m j lo. l (II n 'k)'
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is that these effects are all due to the same
energy denominators, which correspond to Dop-
pler -shifted cyclotron resonance conditions. '

It may be shown that (v = 2q(Rmax - Rmin),
where Rmax is equal to the maximum value of the
oscillatory part of r(t) in the direction of the wave

vector, and Rmin the corresponding minimum
value, for that orbit whose (p H) value is given

by (9). The condition for a maximum in attenua-
tion is $v = nw, where n is an integer. This
means that the condition for a maximum in geo-
metric resonances is the well-known "matching"
condition:

D=R -R . = nx.
max min

(10)

The conditions for observation of these oscil-
lations are &uc&&1; and also )v* must be of or-
der 1 (but greater than 1). This latter condition
requires cu & (v~/vF)&uc. This condition is also
required in the quantum oscillation case, but in

order for quantum oscillations to be observed,

w~ must be much greater than for geometric re-
sonances. Hence, significantly lower frequen-
cies are satisfactory for the observation of non-

extremal orbits for the case considered here
than for the quantum oscillation case.

I would like to thank Dr. Y. Eckstein for several
helpful discussions, and for calling to my attention
the similarity between the nonextremal orbits dis-
cussed here and those in the quantum oscillation
case.
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This shows that the conductivity, and hence, the
attenuation, is a sum of oscillatory functions of
the arguments (~ . Each period is due to a dif-
ferent orbit, i. e. , a different value of (pF H).
These (pF.H) values are found by transforming (5)

(p .H) =[m/(qH)](H. o'-'-H)(~ —v~ '). (9)F C

For v=0, (pF H) = (vs/vF)(q. H) '(p.g 'H).
Therefore, except for q almost perpendicular to
H, (PF H) =0, and the extremal orbit will be ob-
served. For v0, nonextremal orbits will be
observed. These orbits are identical to those
discussed in reference 1 for qllH; but in addition
to these orbits others will be observed for other
values of angle. The reason that the identical
orbits contribute in the quantum oscillation case

*Based on veork performed under the auspices of the
U. S. Atomic Energy Commission.
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