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three figures, possibly more.
The ground-state 'P wave function has been re-

ported previously'; wave functions for all excited
states of the configurations Is'2s'2P" (3s, 3d) (n

= 0, 1, 2, 3) of 0 and N have been computed and are
being prepared for publication.

In view of Garstang's careful and extensive dis-
cussion of this OI transition, we would like to note
some additional calculations we have performed.
We computed the 0' value using our 'I' ground-
state function and our 'S wave function for the 3s
electron. The value 0. 1052 obtained confirms
the value 0. 11 obtained by Garstang using the

Hartree, Hartree, and Swirles function and Nick-
las and Treanor's function, respectively, for
these two states. ' The results show that, as one
might expect, the value of o' is relatively insen-
sitive to the difference between the 'S and 'S wave

functions. In addition, for the 2P - 3s transition
(neglecting coupling) we have obtained the value
g'= 0. 15 from the Hartree-Fock-Slater (HFS)
wave functions computed by one of us. ' Our ex-
perience in comparing values of g' obtained from
HFS wave functions with more accurate values
(theoretical and experimental) indicates that for
transitions involving excitation of a 2P electron
they are somewhat too large. The ratio of posi-

tive to negative contributions to the integral for
the analytic SCF functions is 10.1, indicating that
while some cancellation does occur in the integra-
tion, it is not severe.

Finally, we would like to point out that the val-
ue of g' for the Ni 2p'3s('P) - 2p'('S), reported in
an earlier paper, ' was listed incorrectly as 0. 12.
The correct value is a'= 0. 131 and this value
leads to the f number of 0. 10 as quoted in that
paper.
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Space Company Independent Research Program.
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Impressive success has been achieved in under-
standing the nuclear energy gap and associated
phenomena in terms of the Belyaev' adaptation
of the superconducting theory to finite nuclei.
The calculations, however, generally employ
simplified internucleonic potentials, with a few
adjustable parameters empirically fitted to a
large quantity of nuclear data. On the other hand,
calculations for infinite nuclear matter, utilizing
"realistic" internucleonic potentials, have shown
that the energy gap is very small or nonexistent.
In order to bridge the difference between these
two approaches, we have performed calculations
for the energy gap of a finite system with inter-
nucleonic potentials which reproduce singlet, s-
wave scattering data.

To simulate a finite nucleus, we have used a
slab model in which the system is of infinite ex-

tent in the x and y directions, but is confined to
a region of thickness L in the z direction. The
basis functions for the system are taken to be
the product of plane waves in the x and y direc-
tions, and standing waves (vanishing outside the
slab) in the a direction. The energy gap is found
from the BCS' integral equation

{k-kj Vjk' -k
2/ ~ " 8+A 21/2

where jk j denotes a state described above and
j-k) is the time-reversed state of jk). In this
work, ek is represented by the effective mass
approximation

~- = (8'/2m «)(k' —k
k F (2)

The ~~ in Eq. (1) is properly replaced by in-
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FIG. 1. Anisotropy of the gap parameter 6{kF) as
function of cos8 =(kF)z jkF for potentials (a) and {b)
and various combinations of {m*/m, L).

FIG. 2. Minimum value of 6(kF) as a function of
I- for various values of m*/m. The solid curves are
for potential (a), the dashed curves for potential {b).
The minimum is achieved at coso = 0, and the value at
minimum is denoted by b, o.

tegrals over kz and A.», and a discrete sum over
'z We have replaced the sum over k'z by an

integral as well, and in doing so have explicitly
eliminated the possibility of oscillations in the
solutions to Eq. (l). Such oscillations have
been found by Blatt and Thompson, ' who studied
a superconducting slab with a BCS-type ("shell" )
interaction. However, our results correspond
roughly with the mean of the oscillatory solution.
Although the nuclear pairing energy data (see
Fig. 3) exhibit oscillations suggestive of those
found by Blatt and Thompson, there is no hope
of reproducing them in detail in any slab model
since they arise from details of the spherical or
spheriodal shell structure.

The two-body interactions employed reproduce
the singlet s-wave scattering data (scattering

2
= Q z.~.(k)x.(k')

~ Zz=1
(3)

where w (k) =(k'+Pf') ' and [k) is a plane-wave
state. The parameters for the two distinct po-
tentials used here, denoted by (a) and (b), are'

P~ A., P2
(F-') (F') (F ') (F')

(a)
(b)

7.655
123.1

l.766
1.620

1.731
0.9530.

length, effective range, and 310-MeV phase
shift) as described in Kennedy, Wilets, and Hen-
ley. ' Briefly, the interactions are represented
by back-to-back Yamaguchi potentials,

(-,'K+M, —,'K-ki Vi —,'K+M', —,'K —k')
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the effective mass, ' which is about 0.7. Since
the density surface thickness in the model is
sharper than that of an actual nucleus, we can-
not expect better agreement. Calculations based
upon a finite square-well potential (now in prog-
ress) will yield a more gradual falloff in nuclear
density, and are expected to reduce the effective
mass required to fit the data.

The identification of the energy gap as a func-
tion of surface-to-volume ratio indicates that
the gap should also be an increasing function of
nuclear deformation as Griffin' deduced from the
anisotropies of fission fragments. If we assume
that the gap in spherical nuclei is given by

=cA '",
sph

then for a spheroidal nucleus characterized by
a deformation parameter P, we have

S =cA '"[1+(3/4s)P']

with c =12.8 MeV. This estimate, of course,
ignores specific shell structure effects.
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Recently Brown and Singer' found a good agree-
ment with all the available data concerning ener-
gy spectra and branching ratios in the three-pion
decays of the g and K mesons by assuming the
existence of an I= J = 0 di-pion resonance of mass
about 400 MeV and of full width 75 to 100 MeV
reported earlier by Samios et al. ' The purpose
of the present paper is to point out that the pres-
ence of such a resonance would make the K,
meson heavier than the K, meson by the right
order of magnitude. '

The dispersion-theoretical formulation of this
problem was first presented by Barger and Ka-
zes, and we shall briefly recapitulate their ap-
proach. Within the framework of the I;conserv-
ing strong interactions the rest masses of the K,
and K, mesons are degenerate and their mass
difference is generated by weak interactions. In
order to study this problem let us introduce the
proper self-energy operator or the polarization
operator II(s) of the Kp meson due to weak inter-

actions, where s is the square of the virtual K-
meson mass m. Then the self-energy of the K
meson due to weak interactions is given by'

where M is the degenerate K-meson mass and
GER' is the complex self-energy given more ex-
plicitly by

and

55K = 5M - 2-il .
5M and I are the mass shift and full width of the
K meson. These formulas give a physical inter-
pretation of the quantity ll(s).

Next we shall introduce an unsubtracted disper-
sion relation for Il(s), i.e. ,

(4)
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