
VOLUME 12, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MARcH 1964

DOES SPONTANEOUS BREAKDOWN OF SYMMETRY IMPLY ZERO-MASS PARTICLES?
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There is relatively intense interest at present

in exploring more deeply and widely the sugges-
tion' that the mathematical methods essential to
the understanding of material media which exhib-
it long-range order (ferromagnets, supercon-
ductors, etc. ) may also be basic or useful for the
theory of elementary particles. The original
work had two connected aspects: the generation
of fermion masses (by extension of the under-
lying group, mass differences) by the "sponta-
neous breakdown of symmetry, " and the conse-
quent occurrence of collective boson excitations.

Though the two kinds of consequences appear
inextricably linked in the above work, further
studies have tended to emphasize one or the other
aspect. Illustrative of one kind of study has been
the effort to "derive" the mass formula for the
octet of fermions in the SU(3) symmetry model
of strong interactions, '&' ignoring the possible
occurrence —in the particular models employed-
of boson excitations. By analogy with the results
of reference 1 the models in question would, how-
ever, appear to offer the embarrassment of non-
existent strongly interacting scalar bosons with
zero mass. A second line of investigation deal-
ing largely with this latter problem traces to
Goldstone's conjecture that all broken-symmetry
models thus far considered are indeed plagued
with this difficulty. Goldstone, Salam, and Wein-
berg' gave two proofs of this conjecture whereas
Bludman and Klein' have refined and generalized
one of these proofs.

In the latter work, it was emphasized, though
perhaps insufficiently, that the proof given de-
pended both on the class of models and on the
prescribed method of calculation. The second
proof of Goldstone, Salam, and Weinberg, how-
ever, appears to soar above such detailed con-
siderations and may be summarized as follows:
Lorentz invar iance + continuous internal symmetry
group (represented by commutation relations be-
tween generators and operator representations
as well as by conserved currents)+ spontaneous
breakdown of symmetry (conditions of long-range
order) implies massless bosons. If this proof
is correct, it would seem to spell finis to many
of the interesting possibilities for the application
of the ideas of spontaneous breakdown of sym-
metry.
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where p(x) and j (x) are the particle density and
current, respectively. We assume the Hamiltonian
to be particle conserving, so that

V- j(x)+p(x) =o. (3)

Thus we have [N, H) =0, N= jd x p(x).
From Eqs. (1) and (2), we deduce that

[N, y, (x)]= -2itp, (x),

[N, cp, (x)]=2iy, (x).

(4a)

(4b)

Benjamin W. Lee"
nnsylvania, Philadelphia, Pennsylvania
anuary 1964)

It is well known, however, that the theorem can-
not obtain if one removes the requirement of Lo-
rentz invariance. For in this case there is the
example of the theory of superconductivity, where
the presence of the long-range Coulomb interac-
tion results in a collective boson excitation of
finite rest mass —the plasmon. Anderson has
conjectured that one should be able to construct
the relativistic analog of the plasmon phenomenon.
Baker, Johnson, and Lee' have presented argu-
ments that a new version of quantum electrody-
namics due to Johnson, Baker, and Willey, ' which
possesses formal y, gauge symmetry in conse-
quence of vanishing bare electron mass, does not
conform to the Goldstone theorem. As it stands
presently, however, this work is merely sugges-
tive.

In this note we shall show the following: (1) The
formally exact proof of Goldstone, Salam, and
Weinberg has a nonrelativistic analog, which, if
followed through faithfully, yields, independently
of model, a boson excitation of zero rest mass.
(2) The flaw in the argument will then be given,
and will be seen to nullify as well the covariant
proof.

We deal explicitly with the operators and with
the invariance property relevant to the theory of
superconductivity. I et ko, (x), n = 1, 2, be the
electron destruction operator at the point x = (x, x, ),
4n~(x) its Hermitian conjugate. We shall utilize
the densities
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Thus the rpf(x), i = 1, 2, constitute a representa-
tion of the gauge group generated by ¹ This rep-
resentation plays a fundamental role in the theory
of superconductivity: %e define the system to be
superconducting if the ground state I 0& of a sam-
ple in contact with a number reservoir has the
property (&=volume of sample),

lim (0 I p, (x) I 0& = lim (0 I y, (0) I 0& = y,0-~ 0-~
(5)

where p is a finite number. '
Our pseudoproof will be based on the spectral

representations of the commutators,

&o I [ j(x), v, (o)) I o&

= (2m)
' fd PdP, g2(p, P, ) exp[i(p x —Pox, )], (6a)

&o I b(~), v, (0)] I o&

= (2m) 'fd'pdp, h, (p, p, ) exp[i(p x-p~, )], (6b)

where

g, (p,@)=(2v)'D {6(p,-v (p))(OI j(0) Ip, (u (p)&

x(p, (u (p)ly, (0)10&-6(p, +(u (p))(oly, (0)lp, ~ (p)&

x(p, ~ (p) Ii(0) I 0&), (Va)

g, (p, po) = (2m)'Q {6(PO-(o (P))(ol p(0) IP, (u (P)&

x(p, ru (p) Iy, (0)!0&-6(p,+&a (p))(OI y, (0) Ip, &u (p)&

x(p, e (p)Ip(0)IO&$. (Vb)

lim h, (p, p, ) = C, 6(po),
p-0

(9)

where from (Vb)

C, = lim 2 {(OI@(0)lp, ~ (p)&(p, ~ (p)I9, (O)IO&

p-0

-(olq, (0)lp, ~ (p)&(p, ~ (p)lp(0)lo&), (lo)
n

' n

The sum on n is with respect to the various exci-
tation branches, &u„(P) equalling the excitation
energy of the nth branch for momentum P. The
application of the continuity equation to (6) and
(7) informs us immedicately that

p.g2(p, P,) -PP, (p, P, ) = 0. (8)

The result we are after can be obtained by study-
ing the limit of (8) as P —0, P, fixed. In this limit
one can discard with confidence the first term. "
%e thereupon conclude that

the summation being over those n for which &u„(P)
—0. Thus C, could be zero either because no

branch of the excitation spectrum extends to zero
energy or because, even so, the product of ma-
trix elements goes to zero. Though the consider-
ations to this point evidently lack complete rigor,
we emphasize here our belief that they are cor-
rect but for one subtlety to which attention will
be drawn below.

It remains for us to try to decide if C, is non-
vanishing. The existing argument' applies (4a),
(5), and (9) to (6b).

This yields apparently

(0 I [N, y, (0) ]10&= -2i(0 I y, (0)10&= -2iy,

= fd'pdp. 6'(f, p.)

= fdp, a, (o,p, )=c,

Thus C, 0 and we have "proved" that the excita-
tion spectrum has at least one branch with the
property &u„(P) -0 as P -0, the nonrelativistic
analog of the result of Goldstone, Salam, and

steinberg. Since we know, however, that a real
superconductor, including the Coulomb interaction
among the electrons, has no such property, we
are impelled to seek at least one flaw in the argu-
ment.

That defect resides in the last line of (11).
Though the limit (9) may be well defined, the func-
tion h, (p, P, ) cannot as presently constituted, be
continuous at the limit. In (11)we want the func-
tion evaluated at the point p= 0. %'e then ask for
the possible contribution of states for which
~„(0)=0. There is the ground state I 0&, but this
certainly does not contribute since we have sup-
posed that (0!y,(0)10&=0. Indeed, if this were
the only state involved, we would set h, (O, P, ) = 0
and arrive from (11) at the contradiction rp =0.

To avoid the contradiction, we must suppose
that there exists at least one additional state of
zero energy and momentum, which we label
I 0'&. The occurrence of such "spurious" states,
which are not the limiting states of any branch
of the excitation spectrum, is, in fact, a phenom-
enon well known in approximate calculations
where the representation chosen does not diago-
nalize the generator of some symmetry group. "~"
Here we wish to emphasize that the existence of
such a state or states is an exact consequence of
our fundamental assumption. Indeed, it follows



QQLUME 12 NUMBER 10 PHYSICAL REVIEW LETTERS 9 ggaRcH 1964

directly from (4a) and (6) that

-2iy = (0 I Nl 0')(O' I y, (0) I 0)

-(ol q, (o) to )(o I+to), (12)

where we have assumed (as is the case here) but

the single extra state, Since N can connect only
states of the same energy and momentum, contra-
diction is avoided by invoking the existence of the
state I O'~. "

To summarize, we have reached the conclusion
that the spectral representation (6b) is incomplete.
The matter can be set straight if we write (con-
sidering momentarily again a finite volume)

p(x) = (N/0) +p'(x),

where p'(x) comprises the remaining nonzero-mo-
mentum Fourier components of p(x),

fp' (x, x,)d'x = 0. (14)

The spectrai representations (6) and (7) are then
correct with the replacement of p(x) by p'(x) and

with the understanding that spurious states are
excluded. The conclusions (8), (9), and (10) are
unaffected, but we can then decide nothing a pri-
ori about value of C2, since the last step in the
demonstration, (11), is now trivially satisfied.
On the other hand, the contribution of the first
term of (13) teaches us, by means of (12), of the
existence of the spurion.

The revised considerations of this note apply
equally well to Lorentz-invariant field theories,
the special role of Lorentz invariance consisting
only in rendering the spectral representations
more succinct and familiar. As given in refer-
ence 5, these are correct representations only
for the primed quantities defined by equations
analogous to (13).

In conclusion, we wish therefore to emphasize
two points: (1) There exists no general proof,
independent of model and method of calculation,
which establishes the existence of zero-mass
particles in field theories with spontaneous break-
down of symmetry. (2) There are nevertheless
classes of such field theories wherein zero-mass
particles do occur in consequence of the broken

symmetry. %e may now anticipate with greater
confidence, however, that the theory of supercon-
ductivity, as a definite example where such is not
the case, does not stand isolated because of its
nonrelativistic aspect. Some possible relativistic
counterparts are being studied and will be pre-
sented in a subsequent communication.
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