way, is the seventh component of a pseudoscalar octet with $\mathfrak{C}=+1$. Again CP=+1, but the transition between the p-v spurion and K_1^0 is forbidden by SU(3). This fact tends to make alternative (b) above somewhat less attractive than it was without unitary symmetry.

Next, consider the transition from the p-v spurion to $K_1{}^0+\pi^++\pi^-$ or $K_1{}^0+\pi^0+\pi^0$ in a symmetrical state, which is responsible for the decays $K_1{}^0+2\pi$. Since the K and π 's all belong to the same octet, the unitary spin coupling of the three octets to form the fourth must be totally symmetric. With this coupling, we can form out of $K_1{}^0+2\pi$ the seventh component of a pseudoscalar octet with $\mathfrak{C}=+1$ (like $K_1{}^0$) but not the sixth component of a pseudoscalar octet with $\mathfrak{C}=-1$ (like the p-v spurion). Thus, $K_1{}^0+2\pi$ is forbidden⁸ by SU(3).

Finally, the property e=-1 of the p-v spurion gives one condition on the four independent observable p-v amplitudes A in the weak decay of strange baryons into baryon plus pion:

$$-A(\Lambda \rightarrow p + \pi^{-}) + 2A(\Xi^{-} \rightarrow \Lambda + \pi^{-}) = \sqrt{3}A(\Sigma^{+} \rightarrow p + \pi^{0}).$$

This condition, compatible with experimental evidence, is valid in the limit of unitary symmetry in the model presented here. In references 6 and 7, the same condition is found for both p-v and p-c amplitudes, but on the basis of R invari-

ance, which does not appear to be a good approximation, at any rate for baryons.

 8 The author is much indebted to Professor Cabibbo for a discussion of this matter. N. Cabibbo (to be published) points out that with $K_1{}^0\to 2\pi$ forbidden by SU(3), the comparatively high rate of $K^+\to 2\pi$ need not be an obstacle to a theory of purely electromagnetic violation of the nonleptonic rule $|\Delta \vec{\mathbf{I}}|=1/2$, in accordance with possibility (a) above. One simple theory of type (a) would involve a single neutral current, transforming like $(-F_3-3^{-1/2}F_8)\cos\theta+(F_6+iF_7)\sin\theta$, to accompany the single charged current transforming like $(F_1+iF_2)\times\cos\theta+(F_4+iF_5)\sin\theta$. Each would be multiplied by its Hermitian conjugate.

ERRATA

 Σ -RADIATIVE DECAY AS A METHOD OF DETERMINING THE ANGULAR MOMENTUM OF THE Σ -PIONIC DECAY. Saul Barshay, Uriel Nauenberg, and Jonas Schultz [Phys. Rev. Letters 12, 76 (1964)].

In Fig. 3 the dashed lines refer to the *P*-wave case and the solid lines to the *S*-wave case.

VARIATIONAL PROPERTY OF FREE-ENERGY PERTURBATION THEORY. Harold Falk [Phys. Rev. Letters 12, 93 (1964)].

A printer's error occurred in the last term of Eq. (4). In the upper limit of the $d\lambda_1$ integral, the subscript p should be deleted. In Eq. (7), the exponent of $(-\beta)$ should be m-1.

^{*}Work supported in part by the U. S. Atomic Energy Commission.

¹M. Gell-Mann, California Institute of Technology Synchrotron Laboratory Report CTSL-20, 1961 (unpublished); Phys. Rev. <u>125</u>, 1067 (1962).

²Y. Ne'eman, Nucl. Phys. <u>26</u>, 222 (1961).

³M. Gell-Mann and M. Lévy, Nuovo Cimento <u>16</u>, 705 (1960). See also M. Gell-Mann, <u>Proceedings of the Tenth Annual International Rochester Conference on High-Energy Physics, 1960 (Interscience Publishers, Inc., New York, 1960).</u>

⁴N. Cabibbo, Phys. Rev. Letters <u>10</u>, 531 (1963). ⁵The current evidence for this rule is reviewed by R. H. Dalitz (to be published).

⁶Benjamin Lee (to be published).

⁷Hirotaka Sugawara (to be published).