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The discovery of the so-called quasistellar
objects, ' with previously unheard-of rates of
energy radiation over extended periods of time,
has helped to sustain interest in the possibility
of gravitational collapse of very large masses. '
If such a collapse takes place, its early stages
are represented quite adequately by Newtonian
mechanics, which predicts the conversion of po-
tential into kinetic energy if a large cloud of mat-
ter contracts. As the contraction proceeds, the
amount of energy converted may become a sig-
nificant fraction of the original rest mass of the
contracting material; it may exceed the amount
of energy that could be freed by thermonuclear
reactions. When the kinetic energy approaches
the original rest energy, the linear dimensions
of the celestial body will be of the order of its
Schwarzschild radius; the Schwarzschild radius
is that distance from a point mass where the
escape velocity of a test particle equals the speed
of light.

From the point of view of general relativity,
the metric and topological conditions prevailing
at and about the Schwarzschild radius have been
explored thoroughly, '&4 As most of this work has
been concerned with the specific spherically sym-
metric solution discovered by Schwarzschild, '
or with other special solutions of Einstein's field
equations, it is of interest to examine whether
similar conditions may be expected to arise gen-
erally in the course of gravitational collapse, re-
gardless of spherical symmetry. That is the
purpose of this note.

In the most common coordinate system used,
the metric at the Schwarzschild radius deviates
from normal behavior in that the component goo
goes to 0, whereas the component gyp tends to
~, so that the product of these two components
remains -1.' Vfe shall simulate this behavior
by centering a coordinate system on a point ex-
hibiting this peculiar behavior, by giving the two
interesting components of the metric tensor the
typical Schwarzschild behavior and by setting the
remaining components constant,

dT' = ddt ' —(1/()dg' —(dy'+ dz').

The form (1) is to be assumed valid only in the

dT2= ,'x dt'-(dx -+dy'+dz ). (2)

This line element lends itself to an intuitive in-
terpretation'. Its only deviation from the standard
Minkowski-Lorentz form is that the coefficient of
dt', the gravitational (Newtonian) potential, is
variable, and the Schwarzschild radius is that
region where the potential drops sufficiently to
cause infinite red-shift. Conversely, whenever
a large negative gravitational potential causes
infinite red-shift, coordinates and units of length
may be introduced so as to approximate locally
the expression (1), or (2). Parenthetically, the
Riemann-Christoffel curvature tensor has the
dimension (L) ', it goes to zero with the square
of the unit in which lengths are measured.

In a drawing in which the geodesics of the Min-
kowski manifold appear as straight lines, the
(x, f)-coordinate grid of Eq. (2) has the appearance
shown in Fig. 1.. The y and z directions have
been omitted. The curves x =constant are hyper-
bolas, all of which have the same asymptotes.
All points with x=0, -~&t&~, are really the
same point, the one at which the two asymptotes
intersect. The asymptotes themselves are light
lines; Weir points can be reached from the in-
terior of the region x ~ 0 only asymptotically, as
they correspond to x =0, t=+~. The transforma-
tion t' = t+ t, is a Lorentz transformation about
the Schwarzschild point on the left of the figure

vicinity of the coordinate origin. There, however,
the form (1) may be achieved in general by appro-
priate scaling of the four coordinates involved, by
rearranging the directions of the three coordinates
$, y, z in relation to t and to each other, and by
scaling of the proper time element dT. Appropri-
ate scaling will also make the values of the deriva-
tives of the metric components up to a designated
finite order a,s small as desired provided they are
finite to begin with. It is implicit in the assumed
functional behavior of the coefficients of the line
element (1) that the Schwarzschild radius, and
any other characteristic intrinsic parameters
having the dimensions of lengths, be large in terms
of the unit of the proper length. As a matter of
fact, the metric (1) is flat.

By the transformation 4$ =x' the line element
(1) may be brought into the "isotropic" form'
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FIG. 1. Coordinate grid in the vicinity of a point
where g~&

= 0.

as the axis. Each of the hyperbolas is mapped
on itself, and so are the two limiting null lines,
and their intersection. Increasing the value of
t by a constant to means on each hyperbola a
disp. acement that is proportional both to x and
to to. Hence the length of every hyperbola is in-
finite, not only in coordinate time but also in
proper time.

The free fall of a test particle is illustrated by
the dashed straight line of Fig. 1. In the vicinity
of the Schwarzschild region, at least, such a free-
fall curve will reach from null line to null line,
and it will have a finite proper length. In terms
of coordinate time, t, it extends from -~ to ~.
This coordinate time, however, is proportional
to the natural time for an observer who maintains
a constant distance from the Schwarzschild region,

and this is so both at his own location and else-
where (at constant x), where he times events with
his own clock and by means of continuous optical
observation. For such an observer the free fall
from any location to the Schwarzschild region
takes forever.

We may finally inquire what happens to an ex-
tended object in free fall. In view of the flatness
of our model manifold, such an object may reach
the Schwarzschild region in rigid motion, and in
particular without changing its volume. In a
curved manifold rigid motion may be impossible,
but it will remain true that any change in volume
and shape need only be finite.
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