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The dipolar interaction between nuclear spins
is responsible for the broadening of the nmr ab-
sorption lines in solids. ' In metals Buderman
and Kittel' showed that the conduction electrons
can give rise to an indirect interaction between
nuclear spine of the form J.~I ~ Ip where I and
I are nuclear spin operators. This type coupling
also exists between electronic spins and is known
to play an important role in magnetism. ' So far
the magnitude of the coupling constant Jg, has al-
ways been derived indirectly, e.g. , by compar-
ing the nmr absorption' or dispersion' linewidth
to a theoretical value based on dipolar coupling
alone, or by observing the variation of the relaxa-
tion time T, in low magnetic fields. ' Here a meth-
od is presented where J can be read directly as
the frequency of an oscillatory term in the spin-
echo envelope observed in alloys. Various Pt
solid solutions have been investigated as an il-
lustration, and experiments are presently under
way to determine whether the method can be ap-
plied also to other heavy elements.

The nmr absorption signals of ' 'Pt in solid so-
lutions are broadened' because of the existence
of a spatial distribution of Knight shifts related
to oscillations of the charge density of the con-
duction electrons. ' Such a static broadening
should not contribute to the decay of the spin-echo
envelope. ' The most striking aspect of the ob-

served spin-echo envelopes, as seen in Fig. 1,
is the strong oscillation modulating the decay.
Such oscillations were present in all samples
studied: solid solutions with, respectively, 6%,
10%, 70% Au in Pt, and 10% Ir in Pt. Their fre-
quency does not depend upon applied magnetic
field (range 3 to 10 kG), temperature (1.4 to 4.2'K),
or pulse conditions. Within experimental error
this frequency was the same in all three low-
concentration samples, and somewhat larger for
the 70% Au sample. This suggests that it is not
determined by the solute nuclei, Au or Ir. We
wi11 see, however, that the presence of the solute
nuclei is a necessary condition for the existence
of the oscillations. The latter can be predicted
on the basis of a model analogous to that proposed
by Hahn and Maxwell" for liquids and their fre-
quency is a direct measure of the Buderman-Kit-
tel indirect spin- spin interaction.

To show this, let us make the following approxi-
mations: (a) We neglect the dipolar and pseudo-
dipolar interactions. The strength of the dipolar
interaction between nearest neighbors in Pt can-
not exceed 130 c/sec, which is small compared
with the frequency of the oscillations (-4 kc/sec).
(b) We neglect the nonsecular components of the
indirect interaction [namely, Q & 8; (I; I +I,. . .

xf& )]. This approximation is justified when the
local inhomogeneous broadening is much larger
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FIG. 1. Variation of the spin-echo amplitude of Pt,
in a 6% Au-94 Pt alloy, as a function of the time sep-
arating the first rf pulse from the echo. These data were
obtained in a homogeneous external field of 10 kG at
1.4'K. The decay time T2 characterizing the dashed
line is 250 psec, as compared to the 12-psec width of a
single echo. This difference is explained by a local
distribution of Knight shifts. The full line was drawn
through the experimental points and represents the os-
cillating spin-echo envelope.

than the indirect interaction, "a condition that is
satisfied here because the alloying produces a
local distribution of Knight shifts resulting in an
inhomogeneous broadening of order 50 kc/sec.
(c) We consider only the indirect interaction be-
tween nearest neighbors. This approximation is
not essential, but it simplifies the calculation
slightly. The amplitude of the spin echo follow-
ing a w/2-w pulse sequence, under assumption (b),
is proportional to"

FIG. 2. Oscillating function E(J7') modulating the
spin-echo envelope. (a) Theoretical and experimental
curve for a concentration of the investigated nuclear
species (here Pt) of 10%. The damping observed
experimentally is not accounted for in our simple mod-
el. It may be due to a partial breakdown of assump-
tions (a), (b), and (c). (b) For high concentrations c,
the function exhibits small peaks between the sharp
peaks at J7 =2nm. This cannot be checked with @Pt
which has a natural abundance of 33.7%, but could be
verified with isotopically enriched Pt samples, or with
a different nuclear species.

where 7 is the time interval between both pulses.
Because of (a) and (c), 8;& =J for nearest neigh-
bors and vanishes otherwise. A straightforward
calculation (for I= 1/2) yields

N r
E(2T) = Q A cos (JT), (2)

r=O
where A is the probability of a 'O'Pt nucleus to
have r nearest '9'Pt neighbors, and N is the total
number of nearest neighbors, 12 for the Pt fcc
lattice. For a random distribution, A is givenr
by the binomial coefficient

x+I exp(2i7 Q J I I )QI }, (l)l l
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Sample
Nearest-neighbor

coupling constant J/2x

6% Au-94% Pt
10% Au-909' Pt
70% Au-309p Pt

6% Ir-94% Pt

4. 14 kc/sec *2%
4.18 kc/sec ~2%
4.95 kc/sec ~ 2%
4.0 kc/sec +10%

It will be noted that these values exceed that ob-
tained indirectly in the pure metal' by a factor of
about 2.

To conclude let us state that the method pre-
sented here will be applicable to metals where J

where c is the concentration of 'O'Pt nuclei. When

Jr is an integral multiple of 2v, E(2T) attains its
maximum value of 1. When J7 is an odd multiple
of w, E(2T) attains a low value which is very close
to zero unless c is very close to 0 or to 1. Thus
we see that the spin-echo amplitude, as function
of T, oscillates at a frequency J without change
of its rf phase. Expression (2) has been evaluated

by a computer. The result for c=0.10 is shown
in Fig. 2 and compared with the experimental
data. The use of a phase-coherent spectrometer"
made it possible to verify that the rf phase of the
echo indeed does not change when the amplitude
gets very small. Thus we see that our approxi-
mation accounts very well for the observed fea-
tures of the oscillations. When approximation (c)
is relaxed, the oscillations at frequency J are
found to be modulated by oscillations at frequen-
cies J„J„etc., where J„J,are the interaction
strengths with next-nearest neighbors, next-next-
nearest neighbors, etc. When approximation (a)
is relaxed, an expansion in powers of Xdipol r/J
shows that to the first order in this quantity, the
shape of the echo envelope is unaffected.

The values of J derived from the experiments
are shown in the table:

is strong compared with the dipolar coupling.
Furthermore, J has to be smaller than the dif-
ference between the frequencies of neighboring
spins, a condition obtained here by alloying.
Heavy metals with close-packed structures rep-
resent the natural candidates of future investiga-
tions. An accurate knowledge of the strength of
the Ruderman-Kittel interaction will add to the
other experimental data with which one can now

try to determine the various parameters entering
in the theory of magnetism in metals.
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