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In dealing with the problem of Mach's principle
the author showed' that the motions of stars with-
in a galaxy and of galaxies within a cluster of
galaxies as well as the general recession of gal-
axies are governed in the Newtonian approxima-
tion by the Lagrange function

Q =-Hr. (2)

B denotes the Hubble factor of cosmic expansion
related to the mean radius G of the curvature of
space by the well-known formula

H =H(t) = G/G.

Since the Lagrange function (1) depends explicit-
ly on time, the total energy A of our test body,
defined, as usual, by the relation

3
A= Q (al./aq )q —I.=T+m.(q .+4)

i=1

is not conserved. Its change during the time in-
terval between t, and t is

aA =- (aI./at)dt =mf Hr (r -Hr)dt. .
1

From Eq. (3) we obtain

H = —(1+q)H', q = —(d'G/dt')/GH'.

Because of the very small value of H in the pres-
ent epoch of cosmic evolution (H, = 2 x 10 "sec ',
for astronomical measurements indicate' H, —= 3
x10 's sec ', and q = 1) the deviations from the
exact validity of the law of conservation of energy
are immeasurably small in terrestrial physics,
but they probably play an important role in cos-
mology.

The aim of this note is to propose a way for a
quantitative examination of the question whether

in which T = ';mr' is the kinetic energy of the ce-
lestial body considered whose mass is m, 4 the
Newtonian gravitational potential expressing the
influence of local inhomogeneities in the distribu-
tion of matter, and 4 the cosmic potential com-
posed additively of a scalar potential y and the
scalar product of the velocity r of this body with
a vector potential Q:

4 =(p(r, t) —r Q(r, t),

F /F =(ym /r )/qH r=(1/q)(r /r)~, (8)

where y is the Newtonian gravitational constant,
and

r, =(ym JH')'".

In the region r & ro the ratio F&/F& drops to
zero so fast that the Newtonian force can be corn-
pletely neglected relative to the cosmic force.
A test body here follows with high accuracy the
law of general cosmic expansion

r =Br, (10)

and its total energy, measured from the center
of gravity of our cluster, increases, in the first
approximation, due to the change of its Newtonian
potential energy m4.

Inside the radius r„Eq. (8) holds the more ac-
curately, the greater the part of the cluster that
is concentrated at the neighborhood of its center
of gravitys; but in any case the ratio FH/FG in
this region is so high that it is mainly the Newto-
nian force that determines here the motion of our
test body. During this part of the motion its to-
tal energy increases too, but now, in the first
approximation, due to the change of its cosmic
energy my. If a test particle. moves in the local

the observed high angular momenta of galaxies
(and other related phenomena) are a consequence
of the nonconservation of energy during cosmic
evolution. We deliberately restrict ourselves to
a nonrelativistic treatment of the problem, be-
cause there exists no uncertainty in classical
analytical dynamics as to how to define the total
energy of a particle.

It follows from the equation of motion

d r/dt'= qH r ——grad 4,
deduced from the Lagrange function (1), that the
Newtonian force I'~ =-mgrad 4 prevails over the
cosmic force FC =-mqH r up to a certain critical
distance. If a rich spherical cluster of celestial
bodies (i.e. , a cluster of galaxies, or a galaxy)
with total mass m, is concentrated into a relative-
ly small volume of the expanding Friedman uni-
verse, the ratio of the absolute value F~ =ymir'
to the absolute value I" is expressed by the re-
lation
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field of a single central body (with 4' = -ymo/r)
along a circular orbit, the cosmic force I"C
changes its path into a spiral with increasing
radius vector. The increase of its total energy
during the time interval At is given, in first ap-.
proximation, by the relation

aA =m(rp —q, ) = - 2mr, 2(—dH'/dt), at

=(I+ q, )mr, 'H, sht =-2(1+q,)y,H, at&0, (ll)

for y, = -~mH, r, '(0. This domain, with x &ra,
thus represents an almost quasiclosed mechani-
cal system whose total energy in the later stages
of cosmic evolution increases very slowly.

If q lies near unity, both forces, I'~ and I'C,
have the same order of magnitude at the distance
r =r, . This is physically the most interesting
region, for here a test body, i.e. , a galaxy (or,
in the early stages of cosmic expansion, a star),
taking part, up to this point, in the general cos-
mic recession, is captured by the local Newto-
nian field, and becomes a member of a cluster
of galaxies (or of a galaxy, respectively). As
is shown in an earlier paper, ' we obtain very
good agreement with the known empirical data
about the cluster of galaxies if we identify the
radius of a rich spherical cluster of galaxies
with the radius ro determined by the simple for-
mula (9).

The process of capture is accompanied by a
relatively high increase of the total energy of
the test body. Quantitatively it can be studied
with the help of a high-speed computer. Such
investigation, which lies outside the scope of the
author's present possibilities, should be carried
out in the following three steps:

(1) We consider the radial cosmic recession
of a test particle, its capture by the local field
of a single central body (with 4' = ymo/r), -and
its free fall in this field. Before and after the
capture, the particle moves very approximately
according to the relation

f =A(are sin(r/r )'"

(12)

in which the constants A, 8, and r have differ-m
ent values before and after the capture. During
this process the motion is described by Eq. (7).

We integrate it numerically for various stages
of cosmic evolution in which the capture took
place, and compute thereafter the increase of
the total energy by Eq. (4).

(2) We consider the motion of a test particle
with the mass m in the local field of a single cen-
tral body (with + = -ymo/r). By Routh's method
we deduce from the Lagrange function (1) the fol-
lowing equation of motion:

d'r/dt' = qH'r-—ymo/r'+ n'/m'r~,

where

o. = mr'(dg/dt) = const.

(13)

(14)
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As the initial value we assume an elliptical or-
bit around the central body and integrate Eq. (13)
in the reversed direction of time (i.e. , towards
the beginning of expansion) in order to find under
which conditions the path of a test body, taking
part in the general cosmic expansion, becomes
elliptical after the capture.

(3) In order to investigate the formation of the
spiral structure of galaxies, we solve the same
problem as sub (2), but we replace the single
central body by a double star (whose field has
no spherical symmetry).

Concluding, let us remark that from the rel-
ativistic standpoint the nonconservation of energy
is a consequence of the fact that the metric of
our space-time continuum, '

ds' = -(dx'+ dy'+ dz') + (c'+ 24)dt',

written with neglect of the local gravitational
field and with 4 given by Eqs. (2), is not sym-
metric on reversing the arrow of time.
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