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It is a well-known result of general relativity
that a mass M, under conditions of hydrostatic
equilibrium, cannot have a (coordinate} radius R
which is less than a certain lower limit. This is
the Schwarzschild limit and is given by'

R & 1.125(2GM/c') = 1.125R„

where G is the constant of gravitation, c is the
velocity of light, and Rp is the "gravitational ra-
dius" appropriate to the mass M.

The existence of the Schwarzschild limit has
been the subject of much recent discussion in the
context of the astronomical discoveries pertaining
to the "quasistellar" radio sources. ' However,
quite apart from astronomical implications, the
question of the stability of gaseous masses as
they approach the Schwarzschild limit is one of
definite physical interest. An examination of this
question, in the framework of general relativity,
shows that gaseous masses become dynamically
unstable (with respect to radial oscillations) well
before they reach the Schwarzschild limit, a fact
which must have astronomical implications.

A rigorous discussion of the stability of gaseous
masses with respect to purely radial oscillations
can be carried out on the basis of Einstein's field
equations for a metric of the form

2 v 02 2 2 . 2 2 A. 2
ds =e (dx ) -r (d8 +sin 8dg )-e dr, (2)

where v and a are allowed to be functions of the
world time x' and the coordinate radius r. The
field equations appropriate to the metric (2) are
known and can be found in standard textbooks. '
If in those field equations, we suppose that none
of the quantities depend on x', we obtain the fol-
lowing equations which govern hydrostatic equi-
librium in general relativity:

ferentiations with respect to r, and pp and f p are
the equilibrium values of the pressure and the
energy density (the latter including not only the

energy pc' due to the mass density p but also all
the other forms of energy that may be present).

Next considering the general time-dependent
field equations appropriate for the metric (2) and

supposing that the various quantities in the time-
dependent state differ from their equilibrium val-
ues (distinguished by the subscript "0"}by quan-
tities of the first order of smallness, we obtain
the following linearized set of equations:
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These expressions can now be inserted in Eq. (9).
And if we further suppose that all the quantities
have a dependence on x' of the form e'ex, Eq. (9)
then gives

+'-, (5p+5e)v, = O, (9)

where 5A. , 5v, 5P, and 5c are the first-order
changes in the respective quantities caused by
the perturbation, and dots denote differentiations
with respect to x'.

Letting $(r, x') denote the "Lagrangian displace-
ment" with respect to the world time" x, we
find that Eqs. (6)-(8), when suitably combined
with the equations governing equilibrium, give

5e = [r'(p, + e,}~]-/r'

vo' =-2po'/(po+eo), (5) 2 A. p
—Vp(pa+ &0)e

where K =8vG/c'. In Eqs. (3)-(5), the subscript
"0"distinguishes that the quantity refers to the
equilibrium static state, the primes denote dif-

=5p'+(~AD'+vo')5p+'-, vo'5e

—
p (x, '+ v, ')(p, + e,) (v, '+ I/r)(, (12)
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where 5e is given by Eq. (10). If the oscillations
are now considered to take place adiabatically,
then' [see Eq. (10)]

~p = hp—.' yp-. (~'k)'/~', (»)
where y denotes the ratio of the specific heats.
(It should be noted that y will, in general, depend

on the local values of P, and e,. )

Equations (12) and (13), further supplemented

by the boundary conditions

$ =0 at r =0 and 6p=0 at r =R, (14)

represent a characteristic value problem for o'.
It can be readily shown that this problem is self-
adjoint and that the following equation provides a
variational base for determining v'.

3i/2 2 2 R v+i 2, 2 2
o e (p o+e)or $ dr = e [4rpo'E +yp (z]~+2~)

0 0
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Jo &0+~0
0

(15)

In the Newtonian limit Eq. (15) reduces to the known formula'

2 2 2 2c'o' pr'$'dr = [4rpo'$'+ypo(r('+2))2jdy.
0 0

(16)

With the simplest "trial function" $ = r, Eq. (15) gives

3g /2 4 R v +)I.o/2 3 2
e' e ~ (p +egr dr = e 0 (4r po'+9ypor )dr

40 so

R v, +3+ 2 4 R v, +g 24 2+~ e ' po(pa+co)r dr- dve ' ~ (po') /(pa+co). (17)

y, = (1 —R'/r ')'" (18)

Since Eq. (15) expresses a minimal (and not
merely an extremal) principle for determining
the lowest characteristic value of 02, it is clear
that a sufficient condition for the occurrence of
dynamical instability is that the right-hand side
of Eq. (17) be negative. By applying this suffi-
cient condition to a homogeneous sphere (as an
illustrative example), we shall show that insta-
bility with respect to radial pulsations of the
kind we are considering does occur before the
Schwarzschild limit is reached.

For a homogeneous sphere of uniform energy
density eo, the equations governing equilibrium,
namely, Eqs. (3)-(5), can be explicitly solved.
Thus, writing

r, =(3c'/8wGe )' ' y=(l-r'/r, ')' '

RIld

we have

and

2 vo 2
e '=y, e '=y, /(I+p, /e, ),

p. /e. = (y -y, )/(3y, -y). (19)

3y, &1 or R&(8/ )'9"r, =0. 9428~„' (20)

and this last condition, when expressed in terms
of M (=4wR'e, /3c'), instead of e„ is equivalent
to the Schwarzschild limit on R.

The various integrals in Eq. (17) can be ex-
plicitly evaluated for the solution (19) and an as-
sumed constant y. And it is found that for an as-
signed value of R/r„ the configuration is stable

We may parenthetically note here that according
to the solution (19), the condition that p, be every-
where positive requires
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Table I. The critioal values of the ratio of the spe-
cific heats which limit the stability of the compressible
homogeneous sphere in general relativity: Rma (given
in the unit rp) is the maximum radius, for a given E'p,

compatible with stability if y &y; and R~ (given in the
unit Rp) is the minimum radius, for a given mass, sim-
ilarly compatible with stability.

si '(R!r ) 7
C

/r
max 0

R /R

0
20'
30'
40'
45'
50'
55'
60'
65'

70 ~ 529'

1 ' 3333
1.3809
1.4536
1.5925
1.7062
1.8771
2.1489
2.6266
3.6158

0
0.3420
0.5000
0.6428
0.7071
0.7660
0.8192
0.8660
0.9063
0.9428

8.549
4.000
2.420
2.000
1.704
1.490
1.333
1.217
1.125

R„/R =(r /R )'. (21)

Thus, in the example considered above, y&1.7062,
configurations with radii less than twice their
gravitational radius are unstable.

Since the maximum permissibt. e value of y, for
a perfect gas, is 5/3, it follows from the results
of Table I that dynamical instability will certainly
intervene before the configuration has contracted
to 2. 12 times its gravitational radius. However,
it must be remembered in this connection that,
for configurations as massive as the quasistellar
radio sources are contemplated to be, the ratio
of the specific heats can exceed 4/3 only by a
very small amount; and when this is the case,
the instability with respect to radial pulsations
mill arise, already, when the configuration is
many times its gravitational radius. Thus, when
y-4/3, one obtains from Eqs. (17) and (19) the

only if y exceeds a certain lower limit y . Val-
ues of y determined in accordance with Eqs. (17)
and (19) are listed in Table I. From the results
of Table I, me may conclude, for example, that
if y & l. 7062, the configurations are unstable for
0. 9428 & R /re & 0. 7071.

The critical values of yz limiting the stability
of configurations of a given e„when expressed
for a given mass, require that the radius exceeds
a certain lower limit R if the configuration is to
be stable. We have, in fact, the relation [see the
limits set in Eqs. (1) and (20))

asymptotic r elation

R„/Rp- 5/[14(y - 4/3)] (y —4/3). (22)

If I= 10' solar masses (the mass currently as-
signed to quasistellar radio sources), it can be
estimated that y —4/3 = 7 x10 '; and the lower
limit to R set by Eq. (22), for dynamical stabil-
ity, is 4. 4 x 10'R, = 0. 16 light year; and this ra-
dius is of the same order as the radii estimated
for the objects.

The explicit results that have been derived from
a consideration of the homogeneous compressible
model serve to illustrate the nature of the phe-
nomena we may expect. But the principal con-
clusion —that, for a ratio of the specific heats
only slightly in excess of 4/3, dynamical insta-
bility will intervene long before the mass con-
tracts to anywhere near the Schwarzschild limit-
is not likely to be affected by the consideration
of more realistic models: Indeed, the estimates
of R given by Eq. (22) are likely to be underes-
timates. In any event, it is clear that the insta-
bility we have considered is entirely relativistic
in its origin. An unambiguous demonstration,
that the instability is manifested in nature when
the conditions for its occurrence required by
Eq. (15) are fulfilled, will provide a. unique con-
firmation for general relativity.
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The use of this equation in the present context re-
quires some explanation. Equation (10) (which follows
directly from Einstein's field equation) can be inter-
preted to mean that the Eulerian change &e in ep is
given by &e/(pp+ ep) =-+(p $)/r &x=-4V/V, where V

pp

is the specific volume. And since the formulation
of thermodynamic behavior is affected by the presence
of motions only in the second order [see W. Pauli,
Theory of Relativity (Pergamon Press, New York,
1958), p. 134], we can, in a linear theory, write &p/

pp -—-y&V/V (and regard this relation as defining y);
Eq. (13) for the corresponding Lagrangian change then
follows.

~See P. Ledoux and T. Walraven, Handbuch der Physik
(Springer-Verlag, Berlin, Germany, 1958), Vol. 51,
p. 645.


