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In low-temperature metallic magnets, ferromagnetic (FM) and antiferromagnetic (AFM) orders can
exist, adjacent to one another or concurrently, in the phase diagram of a single system. We show that
universal quantum effects qualitatively alter the known phase diagrams for classical magnets. They shrink
the region of concurrent FM and AFM order, change various transitions from second to first order, and, in
the presence of a magnetic field, lead to either a quantum triple point where the FM, AFM, and
paramagnetic phases all coexist or a quantum critical end point.
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Quantum phases of matter, and the quantum phase
transitions (QPTs) between them, are of great current
interest [1]. One area that has received much attention is
metallic quantum magnets, which are known for very
complex phase diagrams as a function of the temperature,
magnetic field, and nonthermal control parameters such as
the pressure or chemical composition [2]. Apart from an
intrinsic interest in magnetism, their understanding is
important for such diverse problems as high-Tc super-
conductivity, iron-based superconductors, and Kondo sys-
tems. The QPT from a quantum ferromagnet (FM) to a
paramagnet (PM) by now is well established to be
generically discontinuous or first order as a result of soft
or massless excitations in zero-temperature metals that
couple to the long-wavelength magnetization fluctuations.
This was predicted theoretically by Belitz, Kirkpatrick, and
Vojta (BKV) [3,4] and confirmed by numerous experiments
[2]. This is a dramatic departure from the second-order
transition observed at higher temperatures, which is quali-
tatively described by a classical Landau theory. The
reconciliation between the two is provided by a quantum
tricritical point (QTCP; see Ref. [5] for our use of the
“quantum” prefix) in the T-dependent phase diagram. In an
applied magnetic field h, tricritical wings appear that end in
a quantum wing-critical point (QWCP) [6]; this also has
been observed [2].
Quantum antiferromagnets (AFMs) represent a very

different physical situation. Here the order parameter
(the staggered magnetization) is a short-wavelength quan-
tity that the fermionic soft modes do not couple to directly,
and the AFM-PM is generically continuous or second
order. This dichotomy raises interesting questions for
systems where both AFM and FM orders are present,
either in adjacent phases or concurrently in the same phase
[7]. Such materials range from relatively simple com-
pounds, such as FeRh [8] and NbFe2 [9], to more complex
Kondo-lattice systems such as CeRuPO [10] and CeAgSb2
[11]. The transition from pure FM to pure AFM in clean

systems is usually observed to be discontinuous, although
in systems that contain substantial amounts of disorder,
such as Mn-doped Ni2MnGa [12], Ba0:6K0:4Mn2As2 [13],
and CaRu1−xMnxO3 [14], there may be a continuous
transition from a pure FM phase to a phase of concurrent
FM and AFM orders. The phase diagrams are complicated,
have been only incompletely mapped out for most systems,
and contain a complex mixture of first- and second-order
transitions. One of the most detailed phase diagrams is
provided by a recent study of LaCrGe3 under pressure and
in a magnetic field, which found an AFM dome at high
pressure, with an adjacent FM phase and a first-order line of
metamagnetic transitions extending from the dome boun-
dary to higher magnetic fields [15].
These observations raise important questions, including

(i) What is the generic topology of quantum phase diagrams
involving both AFM and FM order? (ii) What is the nature
of the various QPTs? (iii) Why does concurrent FMþ
AFM order rarely occur, so it draws considerable attention
when it does [13,16,17]?
In this Letter, we investigate these questions and discuss

a free-energy functional that answers them, is in good
agreement with existing experiments, and makes predic-
tions for future ones. For three-dimensional (3D) systems,
the free-energy density has the form

f ¼ rn2 þ tm2 þ ~vm2ðm2 þ n4Þ lnðm2 þ n4 þ T2Þ
þ un4 þ vm4 þ 2wn2m2 − hm: ð1Þ

Here m and n are the average magnetization and staggered
magnetization, respectively, h is the external magnetic
field, and T is the temperature, all measured in suitable
microscopic units. The interpretation of the parameters r, t,
u, and v is the same as in an ordinary Landau theory for FM
or AFM order. r and t depend on T and other control
parameters, such as pressure p, in complicated ways. At
critical values of these parameters, rcðTc; pcÞ, tcðTc; pcÞ,
which in turn correspond to critical values of T and p,
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phase transitions occur that can be second order or first
order. u and v depend on the control parameters in less
crucial ways; we need only to assume that they are positive
(otherwise, one needs to keep a term of higher order in m
and n). w parameterizes the free-energy cost of concurrent
FM and AFM orders: Large and small values of w penalize
and favor concurrent orders, respectively. Stability
requires w > −w�ðu; v; ~vÞ; in the classical case, one has
w�ðu; v; ~v ¼ 0Þ ¼ ffiffiffiffiffiffi

uv
p

. For ~v ¼ 0, this is the classical
Landau theory discussed by Moriya and Usami (MU)
[18,19], which is analytic in n and m. The quantum effects
that are crucial for understanding the low-temperature
phase diagrams are contained in the logarithmic term with
coupling constant ~v. For a derivation of this term, see
Supplemental Material [20], which includes Refs. [21–27];
here we confine ourselves to some plausibility arguments.
For a pure FM, n ¼ 0, Eq. (1) reduces to the theory of BKV,
and the basic question is how an AFM order parameter
enters this term. It cannot do so in the same way as the FM
order parameter, since it is characterized by a large wave
number. However, a pair of AFM order parameters can
combine to couple to both the homogeneous FM order and
the fermionic soft modes, which suggests that n2 enters the
logarithmic term in the same way asm does. The derivation
confirms this and yields a positive coupling constant ~v > 0
that measures the strength of the quantum fluctuations. The
nonanalytic nature of the quantum term, which is in sharp
contrast to the Landau theory, reflects the fact that soft or
massless excitations have been integrated out to derive it.
We note that the n4 term multiplying the logarithm is of
higher order in the order parameters and should not be
taken seriously. It has no qualitative effects for our
discussion. Finally, we note that in 2D systems the quantum
effects are stronger, and the logarithmic term with coupling
constant ~v in Eq. (1) gets replaced by

− ~vm2ðm2 þ n4Þ1=2: ð2Þ

We now compute 3D phase diagrams by minimizing the
free-energy functional f with respect to m and n. For
simplicity, we will do so for T ¼ 0. For fixed nonzero T, the
results are qualitatively the same as long as T is smaller
than a threshold value related to a tricritical temperature.
The behavior in the vicinity of that temperature, as well as
the stronger quantum effects in 2D, will be discussed
elsewhere [28].
r-t phase diagrams.—For themost basic phase diagram in

the plane spanned by r and t at h ¼ 0, with all other
parameters fixed, there are two possibilities: (i) a single
discontinuous QPT from a pure FM state to a pureAFM state
or (ii) a continuous QPT from a FM phase to an FMþ AFM
phase, followed by a discontinuous transition to a pure AFM
phase. Which of these possibilities is realized depends on the
parameter w in Eq. (1). For w larger than a critical value, one
has the situation shown in Fig. 1(a). There is a single

transition from FM to AFM, and no FMþ AFM phase
occurs. A qualitative change compared to the classical phase
diagram discussed by MU, shown in the inset, is that the
FM-PM transition is first order due to the quantum fluctua-
tions. As a result, the bicritical point (BCP) in the classical
phase diagram is replaced by a quantum critical end point
(QCEP) [5,29]. Quantitatively, the quantum fluctuations
enlarge the FM phase at the expense of the AFM one. For
w smaller than the critical value, one has the situation shown
in Fig. 1(b), with an FMþ AFM phase in between the FM
and AFM phases in a part of the phase diagram. In a
qualitative change from the classical phase diagramdiscussed
by MU, which is shown in the inset, a direct FM-to-AFM
transition exists, there are two QCEPs instead of a single
tetracritical point (TetCP), and the existence of this phase is
restricted to sufficiently negativevalues of r. The latter feature
can be understood from a basic property of the free energy:
Classically, for any solution with m > 0 and n > 0, one has
n2 ¼ ð−r − 2wm2Þ=2u, and a relation of the same structure
remains true in the quantum case. The quantum fluctuations
makem discontinuous, which implies that n can be real, and
the FMþ AFM solution can exist, only for sufficiently large
negative r. In addition to the FM-to-PM transition, those from
FM toAFM, and fromFMþ AFM toAFM, are all first order
as a result of the quantum fluctuations; the latter thus
drastically change the nature of the phase diagram. We note

FIG. 1. Phase diagrams in the r-t plane for the quantum
( ~v ¼ 0.4, main panels) and classical (~v ¼ 0, insets) free-energy
functionals for the large-w (a) and small-w (b) cases. Dashed and
solid lines denote first- and second-order transitions, respectively.
QCEP denotes quantum critical end points, BCP denotes a
bicritical point, and TetCP denotes a tetracritical point; see
Refs. [5,29] for the nomenclature used. Parameter values are
u ¼ v ¼ 1, w ¼ 2 for panel (a) and w ¼ 0.5 for panel (b).
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that, across the first-order FM-AFM transition in Fig. 1(b),
theAFMorder parameter is discontinuous, just as the FMone
is. This is an example of quantum fluctuations driving an
AFM transition first order even though they couple only
indirectly to the AFM order parameter.
In order to discuss phase diagrams directly relevant to

experiments, consider a control parameter p on which both
t and r depend. Changing p at fixed low T will thus map
out a path in the t-r plane. In an actual experiment, p is
often, but not necessarily, realized by hydrostatic pressure
[2]. For simplicity, consider linear paths:

rðpÞ ¼ r0 þ ðr1 − r0Þp; tðpÞ ¼ t0 þ ðt1 − t0Þp: ð3Þ

h-p phase diagrams.—In the presence of amagnetic field
h, the free-energy landscape contains a metamagnetic
first-order transition, i.e., a discontinuity in the FM order
parameter, that corresponds to the tricritical wing in the
purely FM theory. This transition may or may not be
physically realized, depending on whether or not the global
minimum of the free energy corresponds to AFM order. For
relatively largew, there are three possibilities. (i) For small ~v,
the QWCP, whichmarks the end point of the tricritical wing,
lies inside the AFM dome; see Fig. 2(a). In this case, the
metamagnetic transition including the QWCP is not observ-
able, and the structure of the phase diagram is qualitatively
the same as in the classicalMU theory [18]: The AFMdome
is delineated on the left by a first-order transition to a (field-
polarized) FM state and on the right by a second-order
transition to a field-polarized PM state, with a tricritical
point (TCP) separating the two parts of the dome boundary.
The TCP may lie to the left or to the right of the dome
maximum, depending on parameters; see also Fig. 3(a) and
the related discussion. (ii) For larger values of ~v, the QWCP
lies outside the AFMdome. If the tricritical wing crosses the
dome boundary where the AFM becomes unstable via a

FIG. 2. Phase diagrams in the h-p plane for u ¼ v ¼ 1, w ¼ 2,
and three different values of the quantum fluctuation parameter ~v.
For ~v ¼ 0.5, panel (a), the structure is qualitatively the same as in
the classical MU theory; for larger values of ~v, it is drastically
different. Dashed and solid lines denote first- and second-order
transitions, respectively. The dotted (green) line is the unobserv-
able part of the tricritical wing inside the AFM dome and does not
represent a phase transition. Special points are a tricritical point
(TCP), a QWCP, a quantum triple point (QTP), and a QCEP; see
Refs. [5,29] for the nomenclature used. p parameterizes the linear
paths in the r-t plane [Eq. (3)] shown in the insets.

FIG. 3. Phase diagram in the h-p plane for u ¼ v ¼ 1, w ¼ 0.5,
and ~v ¼ 0.4. The paths parameterized by p are shown in the
insets. Solid and dashed lines denote continuous and a first-order
transition, respectively. QTCP and QCP denote quantum tricrit-
ical and quantum critical points, respectively; see Ref. [5] for the
nomenclature used. The dotted (green) line in panel (a) is the
unobservable tricritical wing, and QWCP is the unobservable
quantum wing-critical point. Note the qualitative difference
between the two paths.
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first-order transition, there is a quantum triple point (QTP)
where the field-polarized FM and PM phases coexist with
each other andwith theAFMphase. The tricritical wing now
has a part that is outside of the AFM dome and hence
observable, and the dome boundary consists of three parts: a
first-order AFM-FM transition, a first-order AFM-PM
transition, and a second-order AFM-PM transition, with
the TCP that also exists in the classical phase diagram
separating the latter two. This case is illustrated in Fig. 2(b).
(iii) For even larger values of ~v, the tricritical wing intersects
the AFM dome in its second-order section. The dome
boundary now consists of only two sections, one first order
and one second order, that are separated by a QCEP; see
Fig. 2(c). In all three cases, the near-linear shape of the left
side of the AFM dome reflects the unobservable part of the
tricritical wing inside the dome and thus is a direct
consequence of the quantum fluctuations. It is in sharp
contrast to the much more symmetric and evenly curved
phase diagram in theMU theory.We note in passing that the
QWCP and the asymptotic behavior of the AFM-PM phase
boundary near p ¼ 1 can be determined analytically; the
other parts of the phase diagram were obtained by numeri-
cally minimizing the free energy.
For relatively small w, there are two possibilities. (i) If the

path in the r-t plane does not cross the FMþ AFM phase,
then thep-h phase diagram is qualitatively the same as in the
large-w case; see Fig. 3(a), which has the same structure as
Fig. 2(a). (ii) If the path does cross the FMþ AFM phase, a
qualitatively new feature arises: For small external fields,
there is a first-order transition from the FMþ AFM phase to
the FM phase. This is a true phase transition within the AFM
dome that has no analog in the large-w case. This line of first-
order transitions ends in a quantum critical point (QCP),
which in Fig. 3(b) lies within theAFMdome. This is still true
for the larger values of ~v used in Figs. 2(b) and 2(c). The
reason is that with increasing ~v the FMþ AFM phase in the
r-t plane is pushed to larger negative r values. The resulting
increase in the h scale that characterizes the height of the
AFM domemostly compensates for the increased size of the
tricritical wing, and the first-order transition remains within
the dome even for ~v ¼ 0.75. With decreasing ~v, the length of
the first-order line decreases, and in the classical case it
shrinks to zero and the only transition within the dome is a
critical point at h ¼ 0 [18].
Relation to experiments.—Our phase diagrams are

directly applicable to experimental results in T ¼ const
planes at low T, and they are in excellent qualitative
agreement with existing data. In particular, a recent
experimental study of LaCrGe3 has found an h-p phase
diagram (p being hydrostatic pressure) consistent with
Fig. 2(c), with a QWCP well outside the AFM dome [15].
For CeRuPO, a phase diagram in T-p-h space has been
partially mapped out [10]. In the h-p plane, a metamagnetic
transition was found outside the AFM dome that also is
consistent with the existence of the FM-PM first-order

transition line in Figs. 2(b) and 2(c). Additional exper-
imental information is desirable to determine whether the
QTP case in Fig. 2(b), or the QCEP case in Fig. 2(c), is
realized in this material. Experiments on other classes of
materials are needed to check for phase diagrams of the
type shown in Fig. 3. We note that the quantum effects are
necessary to understand the observed phase diagrams: The
only feature that can be understood already within
the classical MU theory is the first-order nature of the
FM-AFM transition; see Fig. 1(a).
Our results help explain why the FMþ AFM phase is

rarely seen [13,16,17]: It requires a special range of w
values and special properties of the path in the r-t plane,
since the quantum effects push the FMþ AFM phase to
negative r values, see Figs. 1(b) and 3.
As mentioned above, for temperatures that are not small

compared to the tricritical temperature in the pure FM
problem, qualitatively new features appear in the phase
diagram including new QTCPs or QCEPs. This will be
discussed elsewhere [28].
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