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We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we
find a broad range of frequencies in which in addition to the waves of density there is a second sound
corresponding to the ballistic propagation of heat in the system. The damping of the second sound mode is
weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low
temperatures. At lower frequencies, the second sound mode is damped, and the propagation of heat is
diffusive.
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The low-energy properties of systems of one-
dimensional interacting fermions are usually described in
the framework of the Tomonaga-Luttinger liquid theory
[1–4]. Its main feature is that the elementary excitations
of the system are treated as noninteracting bosons with
linear dispersion. The advantage of this approach is that it
adequately describes the low-energy properties of the
system at any strength of interaction between the fermions.
This theory provided the foundation for understanding the
basic properties of one-dimensional electron systems, such
as the power law renormalizations of the impurity scatter-
ing and tunneling density of states [5,6], observed in
subsequent experiments [7–10].
Much of the recentwork on the theory of one-dimensional

systems focused on the properties not captured by the
Luttinger liquid picture, such as the nature and lifetimes
of elementary excitations in these systems. When the
interactions between the bosonic excitations are taken into
account, the excitations in spinless Luttinger liquids become
fermions [11] with finite decay rate τ−1ex ∝ Tγ, with the
exponent γ ¼ 7 [12–14] or 6 [15], depending on the details
of the interaction between the physical particles forming
the Luttinger liquid. For weakly interacting spin-1

2
fermions,

τ−1ex ∝ T [16]. Importantly, the scattering processes giving
rise to the decay of elementary excitations do not involve the
backscattering of fermions; i.e., each quasiparticle remains
in the vicinity of the nearest Fermi point. The backscattering
processes involve hole states near the bottom of the band,
and their rate is exponentially small, τ−1 ∝ e−D=T [17–21],
where D is the energy scale of the order of Fermi energy.
In this Letter, we consider the dynamics of a system of

one-dimensional fermions in the absence of disorder at low
temperatures T ≪ D. Such a system possesses three con-
served quantities: the total number of particles N, energy E,
and momentum P. At very low frequencies ω ≪ τ−1, the
system is close to equilibrium and can be described by
classical hydrodynamics. We will be primarily interested in
the regime

τ−1 ≪ ω ≪ τ−1ex : ð1Þ

In this case, the gas of elementary excitations is in thermal
equilibrium but can move with velocity uex not equal to the
velocity u of the center of mass of the fluid [20]. At such
frequencies, the system possesses a fourth conserved
quantity: the difference between the numbers of the right-
and left-moving fermions J ¼ NR − NL. Because the
relaxation of J involves the backscattering of fermions,
it is negligible at ω ≫ τ−1.
The detachment of the gas of elementary excitations from

the rest of the fluid is a well-known feature of superfluid 4He
[22,23]. The appropriate theoretical description of the
motionof this system is in terms of two-fluid hydrodynamics
that predicts the existence of two sound modes. The first
sound is the usual wave of particle density, whereas the
second sound is a wave of entropy that propagates at a
different velocity. Our goal is to develop a similar two-fluid
hydrodynamics of the system of one-dimensional fermions
in the frequency range (1) and todemonstrate the existenceof
the second sound in this system.
We will focus on the system of one-dimensional spin-1

2

fermions of mass m with repulsive interactions and assume
spin rotation symmetry and Galilean invariance. To leading
order in T=D ≪ 1, the dynamics of the system is described
by the conventional Luttinger liquid theory with a linear
excitation spectrum [24]. Our system supports two branches
of bosonic excitations, corresponding to the charge and spin
sectors of the Hamiltonian and propagating at different
velocities, vρ and vσ . The momentum of the system is [3]

P ¼ h
4L

NJ þ
X
k

kðNρ
k þ Nσ

kÞ; ð2Þ

whereN is the total number of fermions in a system of sizeL
with periodic boundary conditions and h is the Planck
constant, while Nρ

k and Nσ
k are the occupation numbers of

the bosonic excitations with momentum k in the charge and
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spin channels, respectively. The first term inEq. (2) accounts
for the fact that atNR ≠ NL thegroundstate of the systemhas
a nonvanishing momentum pFJ, where the Fermi momen-
tum pF ¼ hN=4L. Similarly, the energy of the system is
given by

E ¼ mv2ρ
2N0

ðN − N0Þ2 þ
h2NJ2

32mL2

þ
X
k

½ϵρðkÞNρ
k þ ϵσðkÞNσ

k�; ð3Þ

cf. Ref. [3]. In the first term, N0 is some reference value of
the particle number, and we have used the usual relation
between the ground state compressibility and vρ. Bosonic
excitations in theLuttinger liquid are superpositions of small
momentum particle-hole pairs near each Fermi point. At
NR ¼ NL, the energies are ϵρ;σðkÞ ¼ vρ;σjkj. At NR ≠ NL,
the quasiparticle ground state is moving with velocity

u0 ¼
hJ
4mL

: ð4Þ

The dependence of the quasiparticle energies on u0,

ϵρ;σðkÞ ¼ vρ;σjkj þ u0k; ð5Þ

is obtained by performing a Galilean transformation to the
stationary frame.
At frequencies below τ−1ex , collisions between the bosonic

excitations occur very quickly compared with the typical
time scale ω−1, and to a first approximation one can assume
that the gas of excitations is in an equilibrium state
described by the Bose distribution

Nρ;σ
k ¼

�
exp

�
ϵρ;σðkÞ − uexk

T

�
− 1

�−1
: ð6Þ

Since the collisions between excitations conserve their total
momentum, the equilibrium is characterized by the velocity
uex, which is not necessarily equal to the velocity u0
associated with the Fermi surface.
As discussed above, in the absence of backscattering

there are four conserved macroscopic characteristics of the
fluid: the number of particles, energy, momentum, and J.
The hydrodynamic description of the fluid is obtained by
writing these conservation laws in the form of continuity
equations on the respective densities:

∂tnþ ∂xj ¼ 0; ð7aÞ

∂tεþ ∂xjε ¼ 0; ð7bÞ

∂tpþ ∂xjp ¼ 0; ð7cÞ

∂tu0 þ ∂xju0 ¼ 0: ð7dÞ

Here n, ε, and p are the densities of particles, energy, and
momentum of the system, respectively. Instead of density
J=L, we use the velocity u0 defined by Eq. (4). The
corresponding currents j, jε, jp, and ju0 are yet to be
determined.
Below, we consider only the regime of a small deviation

of the system from thermal equilibrium, which will be
described by two velocities u0 and uex, and the deviations
of densities n and s of particles and entropy from mean
values, n − n0 and s − s0. We start by evaluating ε and p in
the leading order in these small parameters. At a finite
temperature, the dominant contribution to the energy
density ε is due to the quasiparticle excitations.
Substituting the occupation numbers (6) into the last term
in Eq. (3), we obtain

ε ¼ πT2

6ℏ ~v
¼ 3ℏ

2π
~vs2; ~v ¼

�
1

vρ
þ 1

vσ

�
−1
: ð8Þ

Here we applied the relation ∂ε=∂s ¼ T to find the entropy
density s ¼ πT=3ℏ ~v and expressed ε in terms of s.
Combining Eqs. (4)–(6) with (2), we find the momentum
density

p ¼ mnu0 þ
2ε

v22
ðuex − u0Þ; v2 ¼

�
v−1ρ þ v−1σ
v−3ρ þ v−3σ

�
1=2

: ð9Þ

Then, using Galilean invariance, we immediately obtain
the particle current j ¼ p=m in the form

j ¼ nu0 þ
2ε

mv22
ðuex − u0Þ: ð10aÞ

The remaining three currents can be obtained using the
kinetic equation for elementary excitations and accounting
for the fact that collisions do not change the number of
particles, momentum, energy, and J. The method was
developed in the theory of superfluidity [23]. When applied
to the Luttinger liquid, the results take the form

jε ¼
X
λ¼ρ;σ

Z
dk
h
Nλ

k

�
j∂nϵλðkÞ þ ϵλðkÞ

∂ϵλðkÞ
∂k

�
;

jp ¼ jð0Þp þ
X
λ¼ρ;σ

Z
dk
h
Nλ

k

�
n∂nϵλðkÞ þ k

∂ϵλðkÞ
∂k

�
;

ju0 ¼
1

m

�
μð0Þ þ

X
λ¼ρ;σ

Z
dk
h
Nλ

k∂nϵλðkÞ
�
:

Here jð0Þp and μð0Þ are the pressure and chemical potential,
respectively, of the Luttinger liquid at T ¼ 0. Using
Eqs. (5) and (6), to leading order in u0 and uex we find

jε ¼ ε
∂n ~v
~v

jþ 2εuex; ð10bÞ
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jp ¼ jð0Þp þ ε
∂nðn~vÞ

~v
; ð10cÞ

ju0 ¼
μð0Þ

m
þ ε

∂n ~v
m ~v

: ð10dÞ

We are now in a position to transform Eq. (7) into a set of
four differential equations on four hydrodynamic param-
eters of the fluid: n, s, u0, and uex. Substituting Eq. (10a)
into (7a), we find

∂tnþ n∂xu0 þ
2ε

mv22
ð∂xuex − ∂xu0Þ ¼ 0: ð11aÞ

When substituting Eq. (8) into (7b), one should use the
expression in terms of the entropy density s and keep in
mind that ~v is a function of density n that in turn depends on
time. Expressing the resulting ∂tn with the aid of Eq. (7a)
and using the expression (10b) for jε, we obtain

∂tsþ s∂xuex ¼ 0: ð11bÞ

This result has the form of the continuity equation
expressing the conservation of entropy, which holds to
the linear order in a deviation from equilibrium. Since
the entropy is transported only by the gas of excitations,
one expects the entropy current in the form js ¼ suex, in
agreement with Eq. (11b).
When substituting Eqs. (10c) and (10d) into (7c) and

(7d), one must evaluate the derivatives of the ground state

chemical potential μð0Þ and pressure jð0Þp with respect to the
density. The chemical potential is easily obtained from
the first term in Eq. (3), resulting in ∂nμ

ð0Þ ¼ mv2ρ=n. The
derivative of the pressure is found using the thermodynamic

relation ∂nj
ð0Þ
p ¼ n∂nμ

ð0Þ ¼ mv2ρ. Then Eq. (7c) takes the
form

∂tu0 þ
2ε

mnv22
ð∂tuex − ∂tu0Þ

þ v2ρ

�
1þ ε

∂2
nðn~vÞ
mv2ρ ~v

� ∂xn
n

þ 2ε

mn
∂nðn~vÞ

~v
∂xs
s

¼ 0: ð11cÞ

To leading order at T → 0, substitution of Eq. (10d) into
(7d) gives the same result, because in this limit p ¼ mnu0.
Taking the difference of these two equations, which
accounts for the time dependence of the momentum of
the gas of excitations, we arrive at

∂tuex − ∂tu0 þ v22
n∂n ~v
~v

∂xn
n

þ v22
∂xs
s

¼ 0: ð11dÞ

To study the propagation of collective modes in one-
dimensional liquids, we now solve the system of equa-
tions (11). In the low-temperature limit, one can set ε ¼ 0

in Eqs. (11a) and (11c). One easily finds two propagating-
wave solutions proportional to e−iωtþiqx. First, Eqs. (11a)
and (11c) give rise to a phononlike mode with the spectrum
ω ¼ vρjqj. This mode is determined by the dynamics of the
variables n and u0, describing the waves of particle density.
Because of the presence of mixing terms in Eq. (11d),
the phonon is accompanied by the oscillation of entropy
density s and velocity of the gas of excitations uex.
Second, there is a solution with the spectrum ω ¼ v2jqj

that describes waves of s and uex, whereas n ¼ n0 and
u0 ¼ const. This wave of entropy is fully analogous to the
second sound in superfluid 4He. The existence of the
second sound in a system of one-dimensional fermions
with repulsive interactions is the main result of this Letter.
Our discussion so far assumed that the frequencies of

interest are in the range (1). In other words, we set τex ¼ 0
and τ ¼ ∞. We shall now relax the latter condition, i.e.,
assume a large but finite τ and extend our treatment to
frequencies ω≲ τ−1. In this regime, one must account for
the backscattering processes studied in Refs. [18–21].
Because of the slow rate of these processes, they do not
affect the equilibrium form of the distribution function (6).
As a result, the state of the system is still described by
parameters n, T, u0, and uex, but because of the back-
scattering processes the two velocities relax toward each
other as

d
dt

ðuex − u0Þ ¼ −
uex − u0

τ
: ð12Þ

It is important to point out that this relaxation does not
affect the expressions (10) for the currents and does not
violate the conservation laws for the number of particles,
energy, and momentum of the system.
In our hydrodynamic description of the one-dimensional

system, the first three of the four equations (7) and,
respectively, (11) express these three conservation laws
and thus remain unchanged. The right-hand side of Eq. (7d)
becomes du0=dt, which is found by applying conservation
of momentum condition dp=dt ¼ 0 to Eq. (9) and using
(12). After that, we recover Eq. (11d) with a simple
modification ∂t → ∂t þ τ−1.
This modification of the hydrodynamic equations (11)

strongly affects the second sound mode at ω≲ τ−1. To a
first approximation, we take ε=nmv22 → 0 and obtain the
frequency of the second sound in the form

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2qÞ2 − ð2τÞ−2

q
− ið2τÞ−1: ð13Þ

At v2jqj > ð2τÞ−1, the frequency is reduced, and, more
importantly, the second sound decays with the rate ð2τÞ−1.
No wavelike solution exists at v2jqj < ð2τÞ−1. Heat propa-
gation over long distances is diffusive: ω ¼ −iðv22τÞq2 at
q → 0. As a result, the system has a large but finite thermal
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conductivity κ obtained by multiplying the diffusion
coefficient v22τ by the specific heat ∂ε=∂T:

κ ¼ πTv22τ
3ℏ ~v

: ð14Þ

Alternatively, the thermal conductivity can be obtained
directly from the modified Eq. (11d). Replacing ∂t → ∂t þ
τ−1 and considering long time scales gives Eq. (11d) with
∂t → τ−1. At ε=nmv22 → 0, the gas of excitations does not
affect particle density n and velocity u0; see Eqs. (11a) and
(11c). Assuming n ¼ const and u0 ¼ 0 in Eq. (11d), one
finds uex ¼ −v22τð∂xsÞ=s. Substituting this result into the
expression jQ ¼ Tsuex for the heat current, we obtain
jQ ¼ −Tv22τ∂xs. Using our earlier result for the entropy
density s ¼ πT=3ℏ ~v, we obtain jQ ¼ −κ∂xT with κ given
by Eq. (14).
To find the effect of a finite backscattering rate on the

first sound, one should solve the set of equations (11) in
first order in the small parameter ε=nmv22. At small q, we
find

ω ¼
�
vρ þ

πT2∂2
nðn2 ~vÞ

12ℏmnvρ ~v2

�
q − i

κT
2mnv2ρ

�∂nðn ~vÞ
~v

�
2

q2: ð15Þ

This result demonstrates that at ωτ → 0 the first sound
mode becomes the ordinary thermodynamic sound. In
particular, the first term in Eq. (15) contains a correction
to the sound velocity, which simply accounts for the
temperature dependence of the adiabatic compressibility
of the one-dimensional quantum liquid. The second term is
imaginary and thus describes attenuation of the sound
mode. Indeed, in any medium, thermal conductivity gives
rise to the absorption of sound. We have verified that the
resulting absorption rate [25] is consistent with the second
term in Eq. (15).
In summary, we have studied collective excitations of a

system of one-dimensional spin-1
2

fermions at a low
temperature based on a two-fluid hydrodynamic descrip-
tion of the system. In contrast to liquid 4He, there is no
superfluid condensate in our case. The two-fluid nature of
the system can be understood as follows. We apply the
Luttinger liquid theory to small sections of the one-
dimensional system. The state of each section is described
by two sets of variables: the occupation numbers of the
elementary excitations and the zero modes N and J. In
addition, we keep in mind that the excitations equilibrate
with each other at the rather short time scale τex, whereas
their equilibration with the zero modes happens at the
much longer scale τ. Thus, in the frequency range (1) the
system consists of two components. The excitations form
a gas, analogous to the normal component of superfluid
4He, whereas the position- and time-dependent values of

densities of N and J describe a second liquid, similar to
the superfluid component of 4He.
Our main result is that, in addition to the well-understood

acoustic charge and spin excitation modes propagating at
velocities vρ and vσ , there is a second sound mode
propagating at velocity v2 given by Eq. (9). This mode
describes the waves of entropy; its decay is small for
frequencies in the range (1). In contrast to superfluid 4He, at
ω ≪ τ−1 the second sound disappears, and the heat trans-
port becomes diffusive. Another system where the second
sound exists in a finite frequency range is dielectric
crystal [26,27].
Our treatment can be applied to other one-dimensional

systems at low temperatures, such as a system of bosons
or spin-polarized fermions. The absence of spin excitations
in these systems can be accounted for by taking the limit
vσ → ∞ in our formulas. In this case, the velocities of the
first and second sound modes are both equal to vρ in the
limit T → 0. It is worth mentioning that at vσ → ∞ our
expression (14) for thermal conductivity recovers the result
for the spinless one-dimensional system obtained in
Ref. [28]. Another important example is that of spin-1

2

fermions with attractive interactions. In this case, the
energy spectrum of the spin excitations has a finite gap
Δ at T ¼ 0 [4]. Our two-mode description still applies at
Δ ≪ T. In the opposite limit, Δ ≫ T, the spin excitations
are frozen out, and the adaptation of the theory to the
spinless case, as described above, should be made.
The existence of the second sound mode means that the

heat propagation in the one-dimensional system is ballistic
at sufficiently high frequencies ω ≫ τ−1, whereas the
usual diffusive heat transport is restored at ω ≪ τ−1.
Experimentally, such a frequency dependence of thermal
transport may be observed in long ballistic quantum wires,
such as those obtained by the cleaved-edge overgrowth
technique [29,30]. A time-dependent temperature differ-
ence across the wire can be achieved by driving ac current
through one of the leads; cf. Ref. [31].
A direct observation of both the first and second sound

was recently reported in a system of 6Li atoms in an
elongated trap [32]. In this experiment, the system was
three-dimensional, and superfluidity was achieved by
tuning interactions to resonance by a magnetic field.
In order to observe the second sound discussed in this
Letter, one can replace the trap in Ref. [32] with an
array of narrow traps that are in the one-dimensional
regime [33,34].
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