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A theory for the nonlocal shear stress correlations in supercooled liquids is derived from first principles.
It captures the crossover from viscous to elastic dynamics at an idealized liquid to glass transition and
explains the emergence of long-ranged stress correlations in glass, as expected from classical continuum
elasticity. The long-ranged stress correlations can be traced to the coupling of shear stress to transverse
momentum, which is ignored in the classic Maxwell model. To rescue this widely used model, we suggest a
generalization in terms of a single relaxation time τ for the fast degrees of freedom only. This generalized
Maxwell model implies a divergent correlation length ξ ∝ τ as well as dynamic critical scaling and
correctly accounts for the far-field stress correlations. It can be rephrased in terms of generalized
hydrodynamic equations, which naturally couple stress and momentum and furthermore allow us to
connect to fluidity and elastoplastic models.
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In 1867, Maxwell described the phenomenology of
viscoelasticity in quiescent glass-forming liquids [1]. A
viscoelastic liquid possesses a slow structural process char-
acterized by the (final) relaxation time τ and behaves like a
solid with (shear) elastic modulusG∞ in rapid deformations.
Only on long time scales does the liquid flow with a finite
viscosity η, which follows as η ¼ G∞τ according to
Maxwell. The approach to vitrification is modeled by an
increase in the relaxation time, and a glass state is probed
when τ exceeds the observation time. This model for the
macroscopic stress response close to equilibrium has been
the basis for phenomenological extensions to flowing com-
plex fluids [2], yet it was overlooked that themodel errs in the
solid state. Equilibrium correlations in fluids are short
ranged, whereas elastic stress correlations in solids are long
ranged according to classical continuum mechanics [3], and
the emergence of shear rigidity in glass is still a topic of active
research [4–9].
Local stresses in amorphous solids have been a topic of

strong interest in recent years, focusing on the rheology of
viscoplastic materials [10–14]. The yielding of soft glassy
materials is well accounted for in phenomenological
models, which combine elastic deformations at small
stresses with plastic deformations at large stresses. Well
inside the glassy phase, the latter have been identified with
activation processes between metastable states [10–12], or
with localized excitations, such as shear deformation zones
[13] and quadrupolar energy fluctuations [14]. Their
coupling via long-ranged elastic stress fields has been
incorporated in elastoplastic models [15–18].
Here we focus on the liquid to glass transition. Following

Maxwell in assuming that correlations at finite frequencies
cross over smoothly at a glass transition, the emergence of
elasticity thus requires the buildup of long-lived and long-
ranged spatial correlations in supercooled states.We consider

spatial correlations of the shear stress within the Zwanzig-
Mori (ZM) formalism [19], and therebygeneralizeMaxwell’s
macroscopic description to finite wave vectors q. We recover
the far-field solutions of elasticity theory in isotropic solids
[20] in the limit of large τ and identify their precursors in the
fluid phase. The generalized Maxwell model contains a
correlation length ξ diverging at the glass transition and
possesses a nonanalytic limit for small q in glass.
We start from the conservation of total momentum

in a fluid of N particles with mass m which introduces
the stress tensor σ as the momentum current: ∂tmvðq; tÞ ¼
iq · σðq; tÞ. The fluid velocity field is vðq; tÞ ¼
ð1= ffiffiffiffi

N
p ÞPN

i¼1 e
iq·riðtÞviðtÞ [21], where riðtÞ and viðtÞ

denote the position and velocity of particle i. Using
Newton’s equation of motion, m_viðtÞ ¼ FiðtÞ, the stress
tensor contains a kinetic term, which we will neglect, and a
potential term, whose expression was determined by Irving
and Kirkwood [22]. The potential term dominates in
supercooled and glassy states [23] and its qualitative
change at the glass transition is the topic we want to
address. Fluctuations are decomposed into plane-wave
contributions at q by Fourier transformation.
The crucial difference between a fluid and a solid

concerns the response under volume-conserving shear
deformations; a fluid flows with a viscosity while a solid
deforms dominantly elastically. In both cases, the force
transmitted by the stress through a planar element is
coplanar to it, which is captured by an off-diagonal element
of the stress tensor [3]. We chose σxyðqÞ, and consider its
autocorrelation function

Cσðq; tÞ ¼
n

kBT
hσxyðq; tÞ�σxyðqÞi; ð1Þ
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where any other set of orthogonal directions other than the
x̂ and ŷ directions would be equivalent; here n is the
particle density and kBT the thermal energy. Also, we will
consider the limit of an incompressible and isothermal fluid
in order to simplify the presentation, postponing the com-
pressible case to a future submission [24]. Thehydrodynamic
conservation laws cause slow dynamics in the shear stress
autocorrelation function Cσðq; tÞ, which can be brought out
by projections onto the conserved variables according to the
ZM formalism [19]. A projection operator P captures the
overlaps between general fluctuations and fluctuations
of the (relevant) conserved quantities, which are the
transversal momenta in the present (incompressible, iso-
thermal) case; P¼ðm=kBTÞv⊥ðqÞi·hv⊥ðqÞ�, with v⊥ðqÞ ¼
q × ½q × vðqÞ�=q2. Nonlocal and non-Markovian effects
follow from integrating out internal degrees of freedom
and introduce memory kernels, which reduce to transport
coefficients in the hydrodynamic limit of both small
frequencies and small wave vectors [25]. Götze and Latz
formulated a general ZM decomposition which is aimed at
the limit of generalized hydrodynamics (GH) inviscoelastic
fluids and retains the possibility of a large structural
relaxation time τ [26]. Applied to correlations of the shear
stress, we find for the Laplace transform of the stress
autocorrelation

CGH
σ ðq;sÞ¼G⊥

0 ðsÞ−
�
ðq2xþq2yÞ−4

q2xq2y
q2

� ½G⊥
0 ðsÞ�2
nkBT

K⊥
q ðsÞ:

ð2Þ

[We have used the convention CðsÞ ¼ R∞
0 dte−stCðtÞ

and only kept the leading order in q; for details of the
derivation, see the Supplemental Material [27].] The GH
representation of Eq. (2) shows explicitly the decomposi-
tion of stress relaxation into a contribution of the hydro-
dynamic modes and the fast dynamics in the space
complementary to the hydrodynamic modes. The latter
are captured by the time- or frequency-dependent memory
kernel G⊥

0 ðsÞ, whereas the former enter Eq. (2) via the
transverse current correlation function hv⊥ðq; tÞ�v⊥ðqÞi ¼
ð1 − qq=q2ÞK⊥

q ðtÞ. In the GH-limit, K⊥
q ðsÞ is conveniently

represented [21],

K⊥
q ðsÞ ¼

kBT=m

sþ q2

mnG
⊥
0 ðsÞ

; ð3Þ

in terms of the same memory kernel G⊥
0 ðsÞ. The kernel is

thus identified as generalized shear viscosity, called shear
modulus in rheometry [2], which is the autocorrelation of
the fluctuating transverse force with ZM-reduced dynamics
at q ¼ 0 [19,21].
Equation (2) is the central result of our Letter and will be

discussed in the following for supercooled liquids, glasses,

and the transition in between. It is valid for arbitrary
frequencies and contains microscopic motion on short time
scales. A related function, the transverse force autocorre-
lation with real dynamics, which does not exhibit
elastic correlations [28], can be recovered from Cσðq; tÞ
for specific wave vector directions (viz., q ¼ qx̂ and
q ¼ qŷ). The crucial differences between fluids and glasses
are observed for small frequencies or long time scales. We
hence focus on stress correlations on hydrodynamic scales.
This is also the regime where the ZM formalism develops
its full power because the relaxation of selected variables
can be well separated from microscopic scales. We already
used this in Eq. (3), where the hydrodynamic pole in the
(conserved) momentum fluctuations was identified, which
captures shear diffusion in the limit of small frequencies
and wave vectors [19,21].
For the global shear stress in fluid states, the difference

between ZM-projected and full dynamics vanishes as
expected [19],

Cσðq ¼ 0; tÞ ¼ G⊥
0 ðtÞ; ðfluidÞ: ð4Þ

The global memory kernel reduces to the shear viscosity for
vanishing frequency, so Eq. (4) is equivalent to the Green-
Kubo relation for the viscosity [21],

η ¼ G⊥
0 ðs ¼ 0Þ

¼ n
kBT

Z
∞

0

dthσxyðq ¼ 0; tÞσxyðq ¼ 0Þi: ð5Þ

The hydrodynamics of fluids is recovered by replacing
the memory kernels by wave vector–and frequency-
independent transport coefficients. Here this means
G⊥

0 ðs → 0Þ → η, and gives for the shear stress correlation
function in a liquid

Cfluid
σ ðq; sÞ ¼ ηþ

�
q2xq2y
q2

−
q2x þ q2y

4

�
4η2

nmsþ ηq2
: ð6Þ

Clearly, the hydrodynamic velocity correlator introduces
anisotropic terms into the stress correlator. In the corre-
sponding time-dependent correlation, Cfluid

σ ðq; tÞ, these
are in fact dominant for finite times [see Fig. 1 (left, lower
panel)].
Maxwell‘s model of viscoelasticity introduces a single

relaxation time τ for the stress, so that its correlation is
given by CMax

σ ðq; sÞ ¼ G∞τ=ð1þ sτÞ. (Maxwell ignored
the wave vector dependence.) Solidlike behavior
emerges, when the deformations are rapid relative to τ
and elastic correlations dominate at low frequencies.
This implies lims→0 limτ→∞ sCMax

σ ðq; sÞ ¼ G∞ and a
persistent contribution of the time-dependent function:
limt→∞ limτ→∞ CMax

σ ðq; tÞ ¼ G∞. For the generalized
hydrodynamics, entailed in the full Eq. (2), we still expect
a divergence of the relaxation time τ; however, the small q
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dependence is completely different than envisioned by
Maxwell due to the coupling to correlations of transverse
momentum which are long ranged in an elastic solid. To
elucidate this we follow the suggestion by the microscopic
mode-coupling theory that an idealized glass state is
obtained when the relaxation time τ is infinite and
correlation functions do not decay to zero [29]. This should
hold for collective density fluctuations and the fluctuating
forces entering the memory kernel G⊥

0 ðtÞ [30], implying a
time-persistent contribution to the shear stress correlation,

Cσðq; tÞ → C∞
σ ðqÞ; for t → ∞ in glass: ð7aÞ

In an incompressible glass, its small wave vector limit is
solely determined by G⊥

0;∞ ¼ limt→∞G⊥
0 ðtÞ and follows

from Eq. (2),

C∞
σ ðqÞ ¼

�
4
q2xq2y
q4

þ q2z
q2

�
G⊥

0;∞ þOðq2Þ: ð7bÞ

The system is characterized by a finite resistivity to shear
deformations and Maxwell’s shear elastic constant can be
identified with G∞ ¼ G⊥

0;∞. In contrast to Maxwell’s
macroscopic description of a glass, however, generalized
hydrodynamics predicts that the limit of q → 0 is nonana-
lytic and depends on the direction q is taken to zero. Such
nonanalytic behavior points to the existence of a length
scale that diverges in the supercooled regime when
approaching the glass transition. It will be discussed below.
Eshelby’s result for the response of an elastic (isotropic)
medium to a point force can be recognized in Eq. (7b)
[15,20]. It predicts the existence of long-ranged stress
correlations,

C∞
σ ðrÞ→

3

4π

G⊥
0;∞

r3
10x2y2− r2ðx2þy2Þ

r4
; for r→∞: ð7cÞ

In d dimensions, the elastic correlations decay like r−d, as
seen recently in flowing dense quasi-two-dimensional
emulsions [31].
How can we generalize Maxwell’s theory to account for

the frequency- and wave vector–dependence of stress
correlations at the glass transition and in the elastic solid?
Generalized hydrodynamics, as entailed in Eq. (2), suggests
to approximate the memory kernel instead of the correla-
tions of the stress itself. Thus we model the memory kernel
by a single relaxation time τ

G⊥
0 ðsÞ ≈ GgMðsÞ ¼ G∞τ

1þ sτ
ð8aÞ

in the spirit of Maxwell but correctly accounting for the
coupling of the stress to conserved momentum fluctuations.
Substitution into Eq. (2) then captures the far-field
shear stress correlation function in the incompressible

limit, to be denoted CgM
σ ðq; sÞ. The generalized Maxwell

model has a rather rich content. CgM
σ ðq; sÞ contains an

isotropic term and an anisotropic term whose angular
dependence 4q̂2xq̂2y þ q̂2z agrees with the one of the elastic
Green’s function in Eq. (7b). The distance to the idealized
glass transition is controlled by the divergence of τ, which
we do not specify explicitly. Introducing a characteristic
length scale ξ2 ¼ G∞τ

2=mn ¼ v2Tτ
2 (with vT the trans-

versal sound velocity of glass [29,32]), we observe that the
time- and wave number–dependent stress correlation obeys
scaling

CgM
σ ðq; tÞ ¼ G∞F ðt=τ;qξÞ; ð8bÞ

i.e., all dependence on the distance to the critical point is
absorbed in the time scale τ and the length scale ξ. The
correlation length ξ ∝ τ determines the spatial extent of
solidlike regions within the viscoelastic fluid. It diverges
strongly as the glass transition is approached, signaling the
appearance of long-ranged stress correlations in the glassy
state, and may be related to the length scale seen in four-
point density correlations in simulations [33,34]. The
hydrodynamic excitations are determined by the poles of
CgM
σ ðq; sÞ in the complex s plane: sτð1þ sτÞ þ q2ξ2 ¼ 0.

The hydrodynamics of the fluid is recovered in the limit

FIG. 1. Scaling function CgM
σ ðq; tÞ=G∞ ¼ F ðt=τ;qξÞ of the

generalized Maxwell model in the qx and qy plane for three
rescaled times t=τ. Top left panel is in the viscoelastic regime for
t=τ ¼ 2, top right panel is in the glassy regime for t=τ ¼ 10−1,
and bottom left panel is in the fluid regime for t=τ ¼ 101; vT ¼ 1
is chosen. Bottom right panel: Time dependence of F ðt=τ;qξÞ
along the axis qy ¼ 0 for two ξqx as labeled.
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sτ ≪ 1, implying sτ ¼ −q2ξ2. Glassy hydrodynamics is
recovered in the opposite limit sτ≫1, implying sτ ¼ �iqξ.
The critical dynamics is contained in the roots of the
dispersion relation for qξ ≫ 1. In this limit, one finds again
sτ ¼ �iqξ, i.e., small-wavelength, high-frequency sound
in the fluid phase [29,32].
Figure 1 summarizes the different behaviors, which

could be tested in scattering from photoelastic materials
[35]. For short rescaled times, the elastic limit Eq. (7b)
dominates. [Note that the rapid oscillations along the axes
would be damped if an instantaneous dissipation rate was
added in Eq. (8a), which is an easy way to capture sound
damping [24].] For long times, the decay of shear oscil-
lations is evident, but the stress correlations remain
anisotropic. For intermediate times, t=τ ≈ 1, the complete
anisotropic and oscillatory pattern of the scaling function
F ðt=τ;qξÞ reveals itself. As function of time, F ðt=τ;qξÞ is
nonmonotonic along the axes (see Fig. 1) and an expo-
nential along the diagonals.
The stress correlation tensor can be measured in a linear

response experiment by applying a weak shear velocity
gradient ∂yvextx to the liquid [19]. The inhomogeneous
flow gives rise to a shear stress, which is given in linear
response by

hσxyðr; tÞilr ¼ 2

Z
t

−∞
dt0

Z
ddr0Cσðr − r0; t − t0Þκ̄extxy ðr0; t0Þ:

ð9Þ

Because of the symmetry of the Irving-Kirkwood
stress tensor, only the symmetric component of the
external velocity gradient enters, with κ̄αβðr; tÞ ¼
1
2
½∂αvβðr; tÞ þ ∂βvαðr; tÞ�. In the fluid phase, a uniform

stationary shear flow gives rise to uniform stationary
stress [21]: σxy ¼ 2ηκ̄extxy . This global constitutive equation
is generalized by Eq. (2) to finite wave vectors and
frequencies, σxyðq;ωÞ¼2Cσðq;s¼−iωÞκ̄extxy ðq;ωÞ. Here, a
periodic external flow rate with frequency ω was
assumed, which leads to a periodic stress with the same
frequency.
The linear response relation allows for an intuitive

interpretation of generalized hydrodynamics. Momentum
conservation is expressed as usual in terms of the force
balance with the local stress and pressure p,

mn∂tvðr; tÞ ¼ ∇ · ½σgMðr; tÞ − pðr; tÞ1�: ð10aÞ

We consider the incompressible limit (viz.,∇ · v ¼ 0), so
that the velocity is purely transverse v⊥ and does not couple
to the pressure. The constitutive equation for σgMðr; tÞ,

�
1

τ
þ ∂t

�
σgMðr; tÞ ¼ 2G∞½κ̄extðr; tÞ þ κ̄ðr; tÞ�; ð10bÞ

is built on Maxwell’s insight on glassy relaxation but
includes the full velocity gradient, which is the sum of the
externally applied one and the internal flow as computed
from Eq. (10a), resulting in a linear but spatially nonlocal
differential equation. Fourier transformation of Eqs. (10a)
and (10b) reproduces the linear response relation with
CgM
σ ðq; sÞ as given by Eq. (2) with the Maxwell approxi-

mation for G⊥
0 ðsÞ.

While the classic Maxwell model only has the external
flow gradient on the right-hand side of Eq. (10b), the
generalized model also includes the internal κ̄ arising from
the nonlocal velocity field, which necessarily is induced by
the imposed flow. Only for finite frequencies and relaxation
times τ does the transverse momentum diffusion allow for
an (anisotropic) gradient expansion leading to Eq. (6). In
solid states where 1=τ ¼ 0, however, the gradient expan-
sion breaks down and the nonlocal strain field induces the
nonanalytic small-q expansion in Eq. (7), which signals
long-ranged elastic stress fields that are at the heart of the
elastoplastic models [15–17]. The strain field considered in
these models follows here as the time integral of the
(symmetrized) velocity gradient tensor [36]: εðr; tÞ ¼R t0þt
t0 dt0κ̄ðr; t0Þ.
In summary, within the Zwanzig-Mori approach we have

obtained the nonlocal correlations of the shear stress in the
long-wavelength limit. This result holds generally in
viscoelastic liquids including, e.g., polymeric systems,
where the q dependence of the transverse force correlation
function has been studied [37,38]. We specifically
addressed glass-forming melts. We have shown that the
simplest generalization of Maxwell’s model including
spatial variations of the stress recovers the long-ranged
elastic fields expected in solids. The shear-stress memory
kernel plays the role attributed by Maxwell to the global
shear stress. The generalization implies the rapid growth of
a correlation length ξ, which opens the window in wave
vector space for the nonanalytic small-q behavior of the
shear stress autocorrelator expected in solids. The far-field
decay of the frozen-in stress fluctuations C∞

σ ðrÞ ∝ r−d

agrees with the one deduced from Goldstone modes in
solids with quenched disorder in d ¼ 2 and d ¼ 3 [39]. Our
approach to neglect the wave vector dependence of the
generalized viscosity kernel G⊥

q ðtÞ is at odds with some
simulation results [40–42] which appear to find a strong
wave vector dependence of the viscosity when super-
cooling. (Whether this can be related to the nonanalytic
q-dependent stress correlations we find should be clarified
in future.) Yet, our approach may be useful for nonlocal
rheological models, where ad hoc transport equations are
formulated including diffusive terms [43] or considering
the inverse Maxwell relaxation time as an independent state
variable [44–46]. The generalized Maxwell model Eq. (10)
implies that nonlocality of the stress relaxation is generated
by the internal velocity field accompanying the externally
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imposed flow, which constrains the building of nonlocal
rheological models.

We thank J. Baschnagel for discussions and acknowl-
edge support from the Deutsche Forschungsgemeinschaft
(DFG) through FOR 1394 projects P3 and P6.
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