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In a recent study, we have found that for a large number of systems the configurational entropy at the pair
level Sc2, which is primarily determined by the pair correlation function, vanishes at the dynamical transition
temperature Tc. Thus, it appears that the information of the transition temperature is embedded in the
structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field
level and, using the concepts of the dynamical density functional theory, show that the dynamical transition
temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the
microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high
transition temperature, the present theory predicts a transition temperature that is similar to Tc. This implies
that the information of the dynamical transition temperature is embedded in the pair correlation function.
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The structure of a liquid at the pair level, described by the
pair correlation function, which is directly accessible in
experiments, plays an important role in the theory of the
liquid state. For systems with pair additive potentials,
thermodynamic quantities can be expressed in terms of
the pair correlation function. However, it is not clear [1,2]
whether the information contained in the pair correlation
function is sufficient to predict the dynamics of the liquid.
To explore this issue, some of us considered in a recent
work [3] the two-body contribution S2 to the excess entropy
[4–7], which is given in terms of the pair correlation
function, and the pair configurational entropy Sc2, which
can be obtained from S2 and the vibrational entropy Svib.
We showed that both S2 and Sc2 are sensitive to small
changes in the structure and Sc2 appears to vanish at the
dynamical transition temperature Tc [3,8,9]. The temper-
ature Tc is obtained by fitting the temperature dependence
of the α relaxation time obtained from simulations
[8,10,11] or experiments [12,13] to a power-law form
predicted by both the standard mode coupling theory
(MCT) F2 model [14] and the schematic form of the
generalized MCT [15].
The connection between the vanishing of Sc2 and

dynamical transition is not understood. The fact that we
have observed this connection for multiple systems also at
different state points rules out the spurious nature of this
connection [3,8,9]. Note that in the calculation of Sc2 we
primarily require the information of the pair correlation
function. Surprisingly identical information, when fed into
standard microscopic MCT, predicts a transition temper-
ature Tmicro

c which is much higher than Tc [10,16]. Thus,
although the dynamical transition is predicted by MCT, it
fails to predict the transition point. This discrepancy

between Tc and Tmicro
c is attributed to the approximations

made in the standard MCT. There have been several
important studies to improve the theoretical framework
[15,17–19]. There have also been studies to attribute a
physical meaning to the dynamical transition and power-
law behavior observed in simulation and experimental
studies [8,10–13]. The p-spin model where the free energy
barriers for activated motion diverge in the thermodynamic
limit shows a MCT-like power-law behavior and a similar
transition temperature [20]. The concepts of the p-spin
model have then been extended to a real system [21], where
it has been shown that at Tc the saddle order in the
landscape appears to vanish [22,23] and the activated
dynamics starts to play a dominant role [24].
In this Letter, we attempt to verify if, indeed, there is any

information of the dynamical transition temperature
embedded in the pair correlation function, as suggested
by the vanishing of Sc2 value [3,8,9]. In analogy with mean
field descriptions of spin systems, in which the thermo-
dynamics of a system of interacting spins is approximated
by that of a single spin in an effective field, we formulate a
description of the dynamics of a collection of interacting
particles in terms of that of a single particle in an effective
potential, which may be viewed as the “caging potential”
created by the neighbors of the particle being considered.
We obtain the effective potential in terms of the equilibrium
pair correlation function and calculate the mean first
passage time for activated escape from this potential.
Unlike other studies [15,17–19], the present study does
not attempt to develop a better theoretical framework to
study the full dynamics of a supercooled liquid. The aim is
to study the role of the structure on the dynamics only at the
pair level, so by construction, the theory does not take into
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account the effects of higher order correlations and is not
expected to provide the full dynamics.
Using mean field approximation, the time evolution of

the density can be written in terms of the following
Smoluchowski equation [25]

∂ρðr; tÞ
∂t ¼ ∇ ·

�
1

ξ
½kBT∇ρðr; tÞ þ ρðr; tÞ∇ΦðrÞ�

�
: ð1Þ

Here ρðr; tÞ is not the average liquid density but describes
the density of each particle in an effective potential ΦðrÞ,
which leads to its caging. In the spirit of mean field
theory, Eq. (1) can also describe the dynamics of a set of
noninteracting particles in an external potential ΦðrÞ.
To calculate the potential, we use the dynamic

density-functional theory (DDFT) approach, whereΦðrÞ ¼
f[δFex½ρðrÞ�]=δρðrÞg. There have been earlier studies
using the DDFT approach, where Fex, the excess part of
the free energy functional, is obtained from the
Ramakrishnan-Yussouff (RY) form and the ρðr; tÞ was
numerically solved using iterative techniques. In these
studies, the time evolution of the density showed caging
and glassy behavior [29,30].
In the present work, we do not use the iterative technique

but follow a set of arguments given in Refs. [31,32]
to obtain the approximate form of the potential. The
standard RY form for excess free energy is [33] Fex≃
− 1

2

R
dR

R
dR0ρðRÞCðjR−R0jÞρðR0Þ ¼ − 1

2

R ½dq=ð2πÞ3�×
Cqρ

2
q, where ρðRÞ ¼ hPiδðR −RiÞi and CðjR0jÞ is the

direct correlation function. To dynamically close the
theory, we make the Vineyard approximation and write
ρsðR; tÞ≃ ½3=2r2i ðtÞ�3=2e½−3R2=2r2i ðtÞ�, thus ρsq ¼ e½−q2r2i ðtÞ=6�.
Next we drop the particle index and assume r2i ðtÞ ¼ r2.
Then the approximate form of the potential becomes [25]

ΦðrÞ≃ −
1

2

Z
dq

ð2πÞ3 Cq

�
N−1

X
i≠j

e−iq·R
ð0Þ
ij

�
e−q

2r2=3

¼ −
1

2

Z
dq

ð2πÞ3 ρC
2
qSqe−q

2r2=3: ð2Þ

In Eq. (2), we neglect the self-term (i ¼ j) [31,32,34], as it
is known to produce unphysical results [35] and also note
that we are interested in obtaining the interaction only due
to the other particles. Here Sq is the static structure factor of
the system. Thus, the mean field potentialΦðrÞ is described
only in terms of the pair structure of the liquid. Note that,
since Eq. (1) describes the dynamics of independent
particles in this potential ΦðrÞ, the dynamics does not
have any contribution from higher order correlations
beyond two body.
The form of Fex in the present formalism is similar to that

in the earlier studies of Schweizer and co-workers [32,34].
However, there is a difference in the way the dynamics is
calculated. Schweizer and co-workers used Kramers theory
to calculate the dynamics, where the information of only
the free energy barrier height is required. In the present

formalism, we use the mean first passage time (MFPT)
formalism,where the information of the full potential energy
surface is required [36]. The MFPT τmfpt is the time taken to
escape the potential ΦðrÞ and is given by [25]

τmfpt ¼
1

D0

Z
rmax

0

eβΦðyÞdy
Z

y

0

e−βΦðzÞdz; ð3Þ

whereD0 ¼ kBT=ξ and rmax is the range of the localization
potential ΦðrÞ.
Since our systems are binary [37], we calculate τmfpt

from the binary form of Eq. (3) [25]. The first interesting
result is that, for all the systems [37], 1=D0τmfpt shows a
power-law divergence (Fig. 1) and can predict the transition
temperature Tmfpt (Table I). Note that Tmfpt is similar to the
dynamical transition temperature Tc (also given in Table I),
obtained by fitting the simulated diffusion coefficient
values (Fig. 1, right panel) to the power-law behavior.
Interestingly, the temperature regime over which 1=D0τmfpt

shows power-law behavior is similar to that of the diffusion
(Fig. 1) and relaxation time [8].
To show that the present analysis is sensitive to

small changes in structure, we compare the results for
the Kob-Andersen binary Lennard-Jones (KALJ) system
and its repulsive counterpart theWeeks-Chandler-Andersen
(KAWCA) system at ρ ¼ 1.2. In Fig. 2, we plot ΦðrÞ,
which is used to calculate τmfpt [via Eq. (3)] and show that,
although the structures are similar, the potentials are
different. The strength of the present formulation is that
this difference is enough to predict the difference in the
dynamics and in Tmfpt (see Table I). Berthier and Tarjus [2]
used the scheme of Schweizer and co-workers [32,34] and
found that, at ρ ¼ 1.2, it failed to show the difference in the
dynamics between KALJ and KAWCA systems. As
mentioned earlier, although their expression of Fex is
similar to ours, in their scheme, the information of only
the free energy barrier height was used for the calculation
of the dynamics. Also, the calculation was performed for an
effective one component description of the binary system
[2]. Note that, in the present formalism, to observe the
difference in the dynamics, it is important to consider a full
binary system at the level of partial structure factors.
However, we make an approximation that the displacement
of the two species are the same [see Ref. [25] for the
derivation of the binary form of Eq. (2)]. The MCT, on the
other hand, even at the binary level, fails to predict
the difference in the dynamics [1]. In microscopic MCT,
the information of the difference in the structure enters
through the vertex [14]. It is possible that, due to the strong
temperature dependence of the vertex [8] and the well-
known feedback mechanism [14], the MCT is not sensitive
to these differences in the structure entering through the
vertex and thus predicts the dynamics to be closer.
However, identifying the exact cause of failure of MCT
[2] and of Schweizer’s scheme [32] in predicting the
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difference in the dynamics for KALJ and KAWCA systems
will require further investigation.
We find that this present method of mean first passage

time calculation can also predict the density effect. In

Fig. 3, we plot the 1=D0τmfpt for KALJ and KAWCA
systems for three different densities. We also plot the
corresponding diffusion coefficients in the inset. Note that
the 1=D0τmfpt show similar behavior as the diffusion

TABLE I. Transition temperatures (T�) are shown. Tmfpt values are obtained by fitting 1=D0τmfpt to power law. Tc values are obtained
by fitting the simulated diffusion values to power-law KALJ [1], KAWCA [1], active LJ [38], WAHN [39], and NTW [40]. Tmicro

c is
calculated from solving the microscopic MCT equation [1,8,10] [Eq. (6)].

T�
KALJ KAWCA Active LJ

NTW WAHNρ ¼ 1.2 ρ ¼ 1.4 ρ ¼ 1.6 ρ ¼ 1.2 ρ ¼ 1.4 ρ ¼ 1.6 f0 ¼ 0.50 f0 ¼ 1.00 f0 ¼ 1.75

Tmfpt
0.428 0.94 1.757 0.283 0.824 1.691 0.38 0.335 0.196 0.308 0.566

�0.022 �0.029 �0.042 �0.005 �0.04 �0.018 �0.004 �0.006 �0.013 �0.012 �0.013
Tc 0.435 0.93 1.76 0.28 0.81 1.69 0.39 0.34 0.19 0.31 0.56
Tmicro
c 0.887 1.868 3.528 0.76 1.771 3.33 0.768 0.761 0.747 0.464 0.87
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FIG. 1. The power-law dependence of ðD0τmfptÞ−1 predicts a transition temperature Tmfpt (left) and the same for total diffusivity (right).
The dashed lines are the power-law fits. For active systems, f0 is the activity as described in Ref. [36]. For clarity, the lnD plot is shifted
for f0 ¼ 1.0 by −1. Here, for all the systems, we take D0 ¼ 1.
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coefficients. At low density, the values for the two systems
are apart and at high density they overlap.
Next we show that we can derive the standard micro-

scopic MCT equation from our present formalism.
Equation (1) is expressed in terms of the fluctuation of
density, δρ [δρðrÞ ¼ ρðrÞ − ρ0, where ρ0 is the average
density] and ΦðrÞ is replaced in terms of Fex. We use the
RY expression of Fex [33], and after taking the functional
derivative and then the gradient of it, we can write

ξ
∂δρkðtÞ

∂t ¼ −kBTk2ð1 − ρ0CkÞδρkðtÞ

þ kBT
2

Z
q
dq½k · qCq þ k · ðk − qÞCjk−qj�

× δρqðtÞδρk−qðtÞ: ð4Þ
Following Kawasaki’s arguments that the last term on the
right-hand side of the above equation contains the products
of two ρ’s at different wave vectors, so it behaves in an
irregular manner like thermal noise, this equation can be
considered as the Langevin equation for the density field
[41]. In non-Markovian limit applying fluctuation dissipa-
tion relation (FDR) [41], the friction ξ can be replaced by a
short time part of friction γ and a memory functionMkðtÞ.
Thus, we can rewrite Eq. (4) as

γ
∂δρkðtÞ

∂t þ kBTk2

Sk
δρkðtÞ þ

Z
t

0

dsMðk; t − sÞ ∂δρkðtÞ∂s
þRkðtÞ ¼ 0; ð5Þ

where RkðtÞ is the new thermal noise and MkðtÞ¼
f½hRkðtÞR−kð0Þi�=kBTVg¼½ðkBTρ0Þ=16π3�

R
dqf̂k·½qCqþ

ðk−qÞCjk−qj�g2SqðtÞSk−qðtÞ [25]. Here we use Gaussian
decoupling and Wick’s theorem to treat the four-point
correlation function. From Eq. (5), we can write a mode
coupling theory equation in the overdamped limit for
density-density correlation SkðtÞ ¼ hδρkðtÞδρ−kð0Þi

γ
∂SkðtÞ
∂t þ kBTk2

Sk
SkðtÞ þ

Z
Mkðt − τÞ _SkðtÞdτ ¼ 0: ð6Þ

In Table I, we present the transition temperatures
predicted by the binary form of Eq. (6) [42]. We find that
for all the systems Tmicro

c ≫ Tc. This higher value of Tmicro
c

can be connected to the Gaussian decoupling approxima-
tion used to arrive at Eq. (6). In a recent work, we have also
shown that the form of the vertex function in the theory that
depends on the structure factor might also be responsible
for this premature divergence [8].
In a similar spirit as presented here and also earlier by

Kawasaki [41], Zaccarelli et al. [43] have mapped the
Newtonian dynamics for the density on a Langevin
dynamics, where they have divided the force into dissipa-
tive term and noise term. The dissipative term was then
calculated using the FDR, and similar Gaussian approx-
imations were made. However, in their formalism, only
after assuming that the interaction between the densities is
given by Cq they could arrive at the MCT expression. Note
that this assumption is already present in the RY form of
free energy functional used in the present study. Thus, the
study of Zaccarelli et al. clearly demonstrates the approx-
imations present in MCT and the possible routes of its
improvement.
In the present work, in analogy with mean field descrip-

tion of spin systems, we express the dynamics of an
interacting particle system in terms of a noninteracting
particle system in an effective potential, where the latter
provides the effect of the interaction only at the two-body
level. Thus, in our formalism, by construction we do not
have any effect of correlation beyond two body. We then
obtain the mean first passage time, which now depends
only on the pair structure of the liquid. The temperature
dependence of it can predict a transition temperature that is
similar to Tc. This result is similar to the earlier observation
of the vanishing of Sc2 at Tk2, where TK2 ≃ Tc [8,9]. Thus,
our study provides a physical meaning to the dynamical
transition temperature and shows that the structure at the
pair level has the information of the transition, which is
now predicted by two independent theoretical frameworks.
We also show that the formalism is sensitive to small
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0.5 1 1.5 2 2.5
1/T

10
-24

10
-20

10
-16

10
-12

10
-8

10
-4

10
0

(D
0τ m

fp
t)-1

LJ 1.2
LJ 1.4
LJ 1.6
WCA 1.2
WCA 1.4
WCA 1.6

0 0.5 1 1.5 2 2.5
1/T

10
-4

10
-2

10
0

D

FIG. 3. The plot of ðD0τmfptÞ−1 against inverse temperature for
KALJ and KAWCA systems at different densities. We take
D0 ¼ 1. (Inset) The plot for diffusion coefficients with inverse
temperature.

PRL 119, 265502 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

29 DECEMBER 2017

265502-4



changes in structure and can predict that the dynamics
is different even for systems having similar structures
[1,3,8]. We further show that, starting from the mean field
equation, we can also derive the microscopic MCT equa-
tion. However, the transition temperature predicted by the
microscopic MCT is much higher than the Tc value. Thus,
the break down of microscopic MCT in predicting the
transition temperature can be connected to the Gaussian
decoupling approximation.
However, although our present formalism predicts the

correct transition temperature, unlike the microscopic
MCT, the power-law exponent is not universal. Also
note that this present method of deriving the transition
temperature is intimately connected to the structure of
the liquid. Thus, for systems like pinned particles, as the
structure remains same, this theory will not be able to
predict different transition temperatures for different
pinning densities [44].
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